132 resultados para Sterile inflammation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Chronic inflammation is a fundamental aspect of metabolic disorders such as obesity, diabetes and cardiovascular disease. Cholesterol crystals are metabolic signals that trigger sterile inflammation in atherosclerosis, presumably by activating inflammasomes for IL-1β production. We found here that atherogenesis was mediated by IL-1α and we identified fatty acids as potent inducers of IL-1α-driven vascular inflammation. Fatty acids selectively stimulated the release of IL-1α but not of IL-1β by uncoupling mitochondrial respiration. Fatty acid-induced mitochondrial uncoupling abrogated IL-1β secretion, which deviated the cholesterol crystal-elicited response toward selective production of IL-1α. Our findings delineate a previously unknown pathway for vascular immunopathology that links the cellular response to metabolic stress with innate inflammation, and suggest that IL-1α, not IL-1β, should be targeted in patients with cardiovascular disease.
Resumo:
Neutrophils, eosinophils, and basophils play essential roles during microbe-induced and sterile inflammation. The severity of such inflammatory processes is controlled, at least in part, by factors that regulate cell death and survival of granulocytes. In recent years, major progress has been made in understanding the molecular mechanisms of granulocyte cell death and in identifying novel damage- and pathogen-associated molecular patterns as well as regulatory cytokines impacting granulocyte viability. Furthermore, an increased interest in innate immunity has boosted our overall understanding of granulocyte biology. In this review, we describe and compare factors and mechanisms regulating neutrophil, eosinophil, and basophil lifespan. Because dysregulation of death pathways in granulocytes can contribute to inflammation-associated immunopathology, targeting granulocyte lifespan could be therapeutically promising.
Resumo:
Innate immunity represents the first line of defence against pathogens and plays key roles in the activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. Pentraxins are essential constituents of the humoral arm of innate immunity and represent a superfamily of highly conserved acute phase proteins, traditionally classified into short and long pentraxins. Pentraxin 3 (PTX3) is the prototypic member of the long pentraxins subfamily. As opposed to C-reactive protein, whose sequence and regulation have not been conserved during evolution from mouse to man, the evolutionary conservation of sequence, gene organization and regulation of PTX3 has allowed addressing its pathophysiological roles in genetically modified mice, in diverse conditions, ranging from infections to sterile inflammation, angiogenesis and female fertility. Despite this conservation, a number of predominantly non-coding polymorphisms have been identified in the PTX3 gene which, when associated in particular haplotypes, have been shown to be relevant in clinical conditions including infection and fertility. Here we review the studies on PTX3, with emphasis on pathogen recognition, tissue remodelling and crosstalk with other components of the innate immune system.
Resumo:
Juvenile sterile granulomatous dermatitis and lymphadenitis is a rare immune-mediated skin disease in young dogs. History, signalment, diagnostics, treatment, and outcome in 10 dogs are described. The age ranged from 8 - 36 weeks. The lymph nodes were enlarged in all dogs, especially the mandibular and prescapular lymph nodes. Systemic signs including fever were present in 8 dogs. Seven dogs suffered from blepharitis and painful edema of the muzzle with hemorrhagic discharge, pustules and papules. Cytology of pustules and lymph node aspirates revealed a pyogranulomatous inflammation. In 7 cases the diagnosis of juvenile sterile granulomatous dermatitis and lymphadenitis was confirmed by histology. Nine dogs were treated with prednisolone (0.5 - 1.25 mg/kg BID), H2-receptor antagonists and analgetics; all dogs were treated with antibiotics. Four dogs were treated with eye ointment containing antibiotics and glucocorticoids. The prednisolone dosage was tapered over 3 - 8 weeks. One dog had a relapse.
Resumo:
Esophageal dilation often leads to long-lasting relief of dysphagia in eosinophilic esophagitis (EoE). The aim of this study was to define the effectiveness, safety, and patient acceptance of esophageal dilation in EoE. In addition, we examined the influence of dilation on the underlying esophageal inflammation.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-alpha concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure.
Resumo:
The measurement of inflammation by biomarkers not only documents clinically relevant infections but also offers an important tool to pin point potentially harmful effects of chronic psychosocial stressors. This article focuses firstly on basic biology of inflammation and lists main biomarkers currently used in psycho-physiologic research. In the second part, the effects of the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system as pathways modulating stress-related inflammation are discussed. Furthermore, current evidence of how chronic psychosocial stressors are related to alterations in inflammatory activity is presented. In summary, job stress, low socioeconomic status, childhood adversities as well as life events, caregiver stress, and loneliness were all shown to exert effects on immunologic activity.
Resumo:
Although tumor necrosis factor (alpha) (TNF) exerts proinflammatory activities in a variety of diseases, including inflammatory bowel disease, there is increasing evidence for antiinflammatory actions of TNF. In contrast, glucocorticoids (GCs) are steroid hormones that suppress inflammation, at least in part by regulating the expression and action of TNF. We report that TNF induces extraadrenal production of immunoregulatory GCs in the intestinal mucosa during acute intestinal inflammation. The absence of TNF results in a lack of colonic GC synthesis and exacerbation of dextran sodium sulfate-induced colitis. TNF seems to promote local steroidogenesis by directly inducing steroidogenic enzymes in intestinal epithelial cells. Therapeutic administration of TNF induces GC synthesis in oxazolone-induced colitis and ameliorates intestinal inflammation, whereas inhibition of intestinal GC synthesis abrogates the therapeutic effect of TNF. These data show that TNF suppresses the pathogenesis of acute intestinal inflammation by promoting local steroidogenesis.
Resumo:
In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release and ceramide accumulation. We sought to investigate CF lung inflammation in the alveoli.
Resumo:
Reactive oxygen species (ROS) production is important in the toxicity of pathogenic particles such as fibres. We examined the oxidative potential of straight (50 microm and 10 microm) and tangled carbon nanotubes in a cell free assay, in vitro and in vivo using different dispersants. The cell free oxidative potential of tangled nanotubes was higher than for the straight fibres. In cultured macrophages tangled tubes exhibited significantly more ROS at 30 min, while straight tubes increased ROS at 4 h. ROS was significantly higher in bronchoalveolar lavage cells of animals instilled with tangled and 10 mum straight fibres, whereas the number of neutrophils increased only in animals treated with the long tubes. Addition of dispersants in the suspension media lead to enhanced ROS detection by entangled tubes in the cell-free system. Tangled fibres generated more ROS in a cell-free system and in cultured cells, while straight fibres generated a slower but more prolonged effect in animals.
Resumo:
Despite successful intensive care a substantial portion of critically ill patients dies after discharge from the intensive care unit or hospital. Observational studies investigating long-term survival of critically ill patients reported that most deaths occur during the first months or year after discharge. Only limited data on the causes of impaired quality of life and post-intensive care unit deaths exist in the current literature. In this manuscript we hypothesize that the acute inflammatory response which characteristically accompanies critical illness is ensued by a prolonged imbalance or activation of the immune system. Such a chronic low-grade inflammatory response to critical illness may be sub-clinical and persist for a variable period of time after discharge from the intensive care unit and hospital. Chronic inflammation is a well-recognized risk factor for long-term morbidity and mortality, particularly from cardiovascular causes, and may thus partly contribute to the impaired quality of life as well as increased morbidity and mortality following intensive care unit and hospital discharge of critically ill patients. Assuming that critical illness is indeed followed by a prolonged inflammatory response, important implications for treatment would arise. An interesting and potentially beneficial therapy could be the administration of immune-modulating drugs during the time after intensive care unit or hospital discharge until chronic inflammation has subsided. Statins are well-investigated and effective drugs to attenuate chronic inflammation and could potentially also improve long-term outcome of critically ill patients after intensive care unit or hospital discharge. Future studies evaluating the course of inflammation during and after critical illness as well as its response to statin therapy are required.
Resumo:
Chronic low-grade systemic inflammation is a key component in atherogenesis. Decreased heart rate variability (HRV), a strong predictor of cardiovascular events, has been associated with elevations in circulating levels of C-reactive protein (CRP), interleukin (IL)-6, and fibrinogen in apparently healthy individuals. We investigated whether decreased HRV is associated with inflammatory markers in patients with coronary heart disease (CHD).