4 resultados para Statistical maps.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Antisocial and violent behaviour have been associated with both structural and functional brain abnormalities in the frontal and the temporal lobes. The aim of the present study was to assess cortical thickness in offenders undergoing forensic psychiatric assessments, one group with psychopathy (PSY, n=7) and one group with autism spectrum disorder (ASD, n=7) compared to each other as well as to a reference group consisting of healthy non-criminal subjects (RG, n=12). A second aim was to assess correlation between scores on a psychopathy checklist (PCL-SV) and cortical thickness. Magnetic resonance imaging (MRI) and surface-based cortical segmentation were used to calculate cortical thickness. Analyses used both regions of interest and statistical maps. When the two groups of offenders were compared, there were no differences in cortical thickness, but the PSY group had thinner cortex in the temporal lobes and in the whole right hemisphere compared to RG. There were no differences in cortical thickness between the ASD group and RG. Across subjects there was a negative correlation between PCL-SV scores and cortical thickness in the temporal lobes and the whole right hemisphere. The findings indicate that thinner cortex in the temporal lobes is present in psychopathic offenders and that these regions are important for the expression of psychopathy. However, whether thinner temporal cortex is a cause or a consequence of the antisocial behaviour is still unknown.
Resumo:
While voxel-based 3-D MRI analysis methods as well as assessment of subtracted ictal versus interictal perfusion studies (SISCOM) have proven their potential in the detection of lesions in focal epilepsy, a combined approach has not yet been reported. The present study investigates if individual automated voxel-based 3-D MRI analyses combined with SISCOM studies contribute to an enhanced detection of mesiotemporal epileptogenic foci. Seven consecutive patients with refractory complex partial epilepsy were prospectively evaluated by SISCOM and voxel-based 3-D MRI analysis. The functional perfusion maps and voxel-based statistical maps were coregistered in 3-D space. In five patients with temporal lobe epilepsy (TLE), the area of ictal hyperperfusion and corresponding structural abnormalities detected by 3-D MRI analysis were identified within the same temporal lobe. In two patients, additional structural and functional abnormalities were detected beyond the mesial temporal lobe. Five patients with TLE underwent epileptic surgery with favourable postoperative outcome (Engel class Ia and Ib) after 3-5 years of follow-up, while two patients remained on conservative treatment. In summary, multimodal assessment of structural abnormalities by voxel-based analysis and SISCOM may contribute to advanced observer-independent preoperative assessment of seizure origin.
Resumo:
The present chapter gives a comprehensive introduction into the display and quantitative characterization of scalp field data. After introducing the construction of scalp field maps, different interpolation methods, the effect of the recording reference and the computation of spatial derivatives are discussed. The arguments raised in this first part have important implications for resolving a potential ambiguity in the interpretation of differences of scalp field data. In the second part of the chapter different approaches for comparing scalp field data are described. All of these comparisons can be interpreted in terms of differences of intracerebral sources either in strength, or in location and orientation in a nonambiguous way. In the present chapter we only refer to scalp field potentials, but mapping also can be used to display other features, such as power or statistical values. However, the rules for comparing and interpreting scalp field potentials might not apply to such data. Generic form of scalp field data Electroencephalogram (EEG) and event-related potential (ERP) recordings consist of one value for each sample in time and for each electrode. The recorded EEG and ERP data thus represent a two-dimensional array, with one dimension corresponding to the variable “time” and the other dimension corresponding to the variable “space” or electrode. Table 2.1 shows ERP measurements over a brief time period. The ERP data (averaged over a group of healthy subjects) were recorded with 19 electrodes during a visual paradigm. The parietal midline Pz electrode has been used as the reference electrode.
Resumo:
We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O&Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O&Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath.