21 resultados para Statistical distribution
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Two new approaches to quantitatively analyze diffuse diffraction intensities from faulted layer stacking are reported. The parameters of a probability-based growth model are determined with two iterative global optimization methods: a genetic algorithm (GA) and particle swarm optimization (PSO). The results are compared with those from a third global optimization method, a differential evolution (DE) algorithm [Storn & Price (1997). J. Global Optim. 11, 341–359]. The algorithm efficiencies in the early and late stages of iteration are compared. The accuracy of the optimized parameters improves with increasing size of the simulated crystal volume. The wall clock time for computing quite large crystal volumes can be kept within reasonable limits by the parallel calculation of many crystals (clones) generated for each model parameter set on a super- or grid computer. The faulted layer stacking in single crystals of trigonal three-pointedstar- shaped tris(bicylco[2.1.1]hexeno)benzene molecules serves as an example for the numerical computations. Based on numerical values of seven model parameters (reference parameters), nearly noise-free reference intensities of 14 diffuse streaks were simulated from 1280 clones, each consisting of 96 000 layers (reference crystal). The parameters derived from the reference intensities with GA, PSO and DE were compared with the original reference parameters as a function of the simulated total crystal volume. The statistical distribution of structural motifs in the simulated crystals is in good agreement with that in the reference crystal. The results found with the growth model for layer stacking disorder are applicable to other disorder types and modeling techniques, Monte Carlo in particular.
Resumo:
We present a framework for statistical finite element analysis combining shape and material properties, and allowing performing statistical statements of biomechanical performance across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position and intensity between them. A statistical model of shape and intensity (bone density) is computed by means of principal component analysis. Afterwards, finite element analysis (FEA) is performed to analyse the biomechanical performance of the bones. Realistic forces are applied on the bones and the resulting displacement and bone stress distribution are calculated. The mechanical behaviour of different PCA bone instances is compared.
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.
Resumo:
Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.
Resumo:
Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution.
Resumo:
Water flow and solute transport through soils are strongly influenced by the spatial arrangement of soil materials with different hydraulic and chemical properties. Knowing the specific or statistical arrangement of these materials is considered as a key toward improved predictions of solute transport. Our aim was to obtain two-dimensional material maps from photographs of exposed profiles. We developed a segmentation and classification procedure and applied it to the images of a very heterogeneous sand tank, which was used for a series of flow and transport experiments. The segmentation was based on thresholds of soil color, estimated from local median gray values, and of soil texture, estimated from local coefficients of variation of gray values. Important steps were the correction of inhomogeneous illumination and reflection, and the incorporation of prior knowledge in filters used to extract the image features and to smooth the results morphologically. We could check and confirm the success of our mapping by comparing the estimated with the designed sand distribution in the tank. The resulting material map was used later as input to model flow and transport through the sand tank. Similar segmentation procedures may be applied to any high-density raster data, including photographs or spectral scans of field profiles.
Resumo:
Statistical physicists assume a probability distribution over micro-states to explain thermodynamic behavior. The question of this paper is whether these probabilities are part of a best system and can thus be interpreted as Humean chances. I consider two strategies, viz. a globalist as suggested by Loewer, and a localist as advocated by Frigg and Hoefer. Both strategies fail because the system they are part of have rivals that are roughly equally good, while ontic probabilities should be part of a clearly winning system. I conclude with the diagnosis that well-defined micro-probabilities under-estimate the robust character of explanations in statistical physics.