27 resultados para States of Consciousness
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions.
Resumo:
Syncope describes a sudden and brief transient loss of consciousness (TLOC) with postural failure due to cerebral global hypoperfusion. The term TLOC is used when the cause is either unrelated to cerebral hypoperfusion or is unknown. The most common causes of syncopal TLOC include: (1) cardiogenic syncope (cardiac arrhythmias, structural cardiac diseases, others); (2) orthostatic hypotension (due to drugs, hypovolemia, primary or secondary autonomic failure, others); (3) neurally mediated syncope (cardioinhibitory, vasodepressor, and mixed forms). Rarely neurologic disorders (such as epilepsy, transient ischemic attacks, and the subclavian steal syndrome) can lead to cerebal hypoperfusion and syncope. Nonsyncopal TLOC may be due to neurologic (epilepsy, sleep attacks, and other states with fluctuating vigilance), medical (hypoglycemia, drugs), psychiatric, or post-traumatic disorders. Basic diagnostic workup of TLOC includes a thorough history and physical examination, and a 12-lead electrocardiogram (ECG). Blood testing, electroencephalogram (EEG), magnetic resonance imaging (MRI) of the brain, echocardiography, head-up tilt test, carotid sinus massage, Holter monitoring, and loop recorders should be obtained only in specific contexts. Management strategies involve pharmacologic and nonpharmacologic interventions, and cardiac pacing.
Resumo:
Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).
Resumo:
Our knowledge grows as we integrate events experienced at different points in time. We may or may not become aware of events, their integration, and their impact on our knowledge and decisions. But can we mentally integrate two events, if they are experienced at different time points and at different levels of consciousness? In this study, an event consisted of the presentation of two unrelated words. In the stream of events, half of events shared one component ("tree desk" … "desk fish") to facilitate event integration. We manipulated the amount of time and trials that separated two corresponding events. The contents of one event were presented subliminally (invisible) and the contents of the corresponding overlapping event supraliminally (visible). Hence, event integration required the binding of contents between consciousness levels and between time points. At the final test of integration, participants judged whether two supraliminal test words ("tree fish") fit together semantically or not. Unbeknown to participants, half of test words were episodically related through an overlap ("desk"; experimental condition) and half were not (control condition). Participants judged episodically related test words to be closer semantically than unrelated test words. This subjective decrease in the semantic distance between test words was both independent of whether the invisible event was encoded first or second in order and independent of the number of trials and the time that separated two corresponding events. Hence, conscious and unconscious memories were mentally integrated into a linked mnemonic representation.