7 resultados para Standing Light-wave

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expanding populations incur a mutation burden – the so-called expansion load. Previous studies of expansion load have focused on codominant mutations. An important consequence of this assumption is that expansion load stems exclusively from the accumulation of new mutations occurring in individuals living at the wave front. Using individual-based simulations, we study here the dynamics of standing genetic variation at the front of expansions, and its consequences on mean fitness if mutations are recessive. We find that deleterious genetic diversity is quickly lost at the front of the expansion, but the loss of deleterious mutations at some loci is compensated by an increase of their frequencies at other loci. The frequency of deleterious homozygotes therefore increases along the expansion axis, whereas the average number of deleterious mutations per individual remains nearly constant across the species range. This reveals two important differences to codominant models: (i) mean fitness at the front of the expansion drops much faster if mutations are recessive, and (ii) mutation load can increase during the expansion even if the total number of deleterious mutations per individual remains constant. We use our model to make predictions about the shape of the site frequency spectrum at the front of range expansion, and about correlations between heterozygosity and fitness in different parts of the species range. Importantly, these predictions provide opportunities to empirically validate our theoretical results. We discuss our findings in the light of recent results on the distribution of deleterious genetic variation across human populations and link them to empirical results on the correlation of heterozygosity and fitness found in many natural range expansions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generation of coherent short-wavelength radiation across a plasma column is dramatically improved under traveling-wave excitation (TWE). The latter is optimized when its propagation is close to the speed of light, which implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles in order to increase the optical penetration of the pump into the plasma core. Pulse-front back-tilt is considered to overcome such trade-off. In fact, the TWE speed depends on the pulse-front slope (envelope of amplitude), whereas the optical penetration depth depends on the wave-front slope (envelope of phase). Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a high-magnification front-end imaging/focusing component. It is concluded that speed matching should be accomplished with minimal compressor misalignment and maximal imaging magnification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND To determine the effect of photoactivated disinfection (PAD) using toluidine blue and a light-emitting diode (LED) in the red spectrum (wave length at 625-635 nm) on species associated with periodontitis and peri-implantitis and bacteria within a periodontopathic biofilm. METHODS Sixteen single microbial species including 2 Porphyromonas gingivalis and 2 Aggregatibacter actinomycetemcomitans and a multispecies mixture consisting of 12 species suspended in saline without and with 25% human serum were exposed to PAD. Moreover, single-species biofilms consisting of 2 P. gingivalis and 2 A. actinomycetemcomitans strains and a multi-species biofilm on 24-well-plates, grown on titanium discs and in artificial periodontal pockets were exposed to PAD with and without pretreatment with 0.25% hydrogen peroxide. Changes in the viability were determined by counting the colony forming units (cfu). RESULTS PAD reduced the cfu counts in saline by 1.42 log₁₀ after LED application for 30s and by 1.99 log₁₀ after LED application for 60s compared with negative controls (each p<0.001). Serum did not inhibit the efficacy of PAD. PAD reduced statistically significantly (p<0.05) the cfu counts of the P. gingivalis biofilms. The viability of the A. actinomycetemcomitans biofilms and the multi-species biofilms was statistically significantly decreased when PAD was applied after a pretreatment with 0.25% hydrogen peroxide. The biofilm formed in artificial pockets was more sensitive to PAD with and without pretreatment with hydrogen peroxide compared with those formed on titanium discs. CONCLUSIONS PAD using a LED was effective against periodontopathic bacterial species and reduced viability in biofilms but was not able to completely destroy complex biofilms. The use of PAD following pretreatment with hydrogen peroxide resulted in an additional increase in the antimicrobial activity which may represent a new alternative to treat periodontal and peri-implant infections thus warranting further testing in clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the characteristics of the quasi 16-day wave in the mesosphere during boreal winter 2011/2012 using observations of water vapor from ground-based microwave radiometers and satellite data. The ground-based microwave radiometers are located in Seoul (South Korea, 37° N), Bern (Switzerland, 47° N) and Sodankylä (Finland, 67° N). The quasi 16-day wave is observed in the mesosphere at all three locations, while the dominant period increases with latitude from 15 days at Seoul to 20 days at Sodankylä. The observed evolution of the quasi 16-day wave confirms that the wave activity is strongly decreased during a sudden stratospheric warming that occurred in mid-January 2012. Using satellite data from the Microwave Limb Sounder on the Aura satellite, we examine the zonal characteristics of the quasi 16-day wave and conclude that the observed waves above the mid-latitudinal stations Seoul and Bern are eastward-propagating s=−1 planetary waves with periods of 15 to 16 days, while the observed oscillation above the polar station Sodankylä is a standing oscillation with a period of approximately 20 days. The strongest relative wave amplitudes in water vapor during the investigated time period are approximately 15%. The wave activity varies strongly along a latitude circle. The activity of the quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012 is strongest over Northern Europe, the North Atlantic ocean and North-West Canada. The region of highest wave activity seems to be related to the position of the polar vortex. We conclude that the classic approach to characterize planetary waves zonally averaged along a latitude circle is not sufficient to explain the local observations because of the strong longitudinal dependence of the wave activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the characteristics of the quasi 16-day wave in the mesosphere during boreal winter 2011/2012 using observations of water vapor from ground-based microwave radiometers and satellite data. The ground-based microwave radiometers are located in Seoul (South Korea, 37° N), Bern (Switzerland, 47° N) and Sodankylä (Finland, 67° N). The quasi 16-day wave is observed in the mesosphere at all three locations, while the dominant period increases with latitude from 15 days at Seoul to 20 days at Sodankylä. The observed evolution of the quasi 16-day wave confirms that the wave activity is strongly decreased during a sudden stratospheric warming that occurred in mid-January 2012. Using satellite data from the Microwave Limb Sounder on the Aura satellite, we examine the zonal characteristics of the quasi 16-day wave and conclude that the observed waves above the midlatitudinal stations Seoul and Bern are eastward-propagating s = −1 planetary waves with periods of 15 to 16 days, while the observed oscillation above the polar station Sodankylä is a standing wave with a period of approximately 20 days. The strongest relative wave amplitudes in water vapor during the investigated time period are approximately 15%. The wave activity varies strongly along a latitude circle. The activity of the quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012 is strongest over northern Europe, the North Atlantic Ocean and northwestern Canada. The region of highest wave activity seems to be related to the position of the polar vortex. We conclude that the classic approach to characterize planetary waves zonally averaged along a latitude circle is not sufficient to explain the local observations because of the strong longitudinal dependence of the wave activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.