3 resultados para Standardized-weight

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intramyocellular lipids (IMCL) are flexible fuel stores that are depleted by physical exercise and replenished by fat intake. IMCL or their degradation products are thought to interfere with insulin signaling thereby contributing to insulin resistance. From a practical point of view it is desirable to deplete IMCL prior to replenishing them. So far, it is not clear for how long and at which intensity subjects have to exercise in order to deplete IMCL. We therefore aimed at developing a standardized exercise protocol that is applicable to subjects over a broad range of exercise capacity and insulin sensitivity and allows measuring reliably reduced IMCL levels.Twelve male subjects, including four diabetes type 2 patients, with wide ranges of exercise capacity (VO(2)peak per total body weight 27.9-55.8 ml x kg(-1) x min(-1)), insulin sensitivity (glucose infusion rate per lean body mass 4.7-15.3 mg x min(-1) x kg(-1)), and BMI (21.7-31.5 kg x m(-2)), respectively, were enrolled. Using (1)H magnetic resonance spectroscopy ((1)H-MRS), IMCL was measured in m.tibialis anterior and m.vastus intermedius before and during a depletion protocol of a week, consisting of a moderate additional physical activity (1 h daily at 60% VO(2)peak) and modest low-fat (10-15%) diet.Absolute IMCL-levels were significantly reduced in both muscles during the first 3 days and stayed constant for the next 3 days of an identical diet/exercise-scheme. These reduced IMCL levels were independent of insulin sensitivity, yet a tendency to lower depleted IMCL levels has been observed in subjects with higher VO(2)peak.The proposed protocol is feasible in subjects with large differences in exercise capacity, insulin sensitivity, and BMI, leading to reduced IMCL levels that neither depend on the exact duration of the depletion protocol nor on insulin sensitivity. This allows for a standardized preparation of IMCL levels either for correlation with other physiological parameters or for replenishment studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Lead exposure is associated with low birth-weight. The objective of this study is to determine whether lead exposure is associated with lower body weight in children, adolescents and adults. METHODS We analyzed data from NHANES 1999-2006 for participants aged ≥3 using multiple logistic and multivariate linear regression. Using age- and sex-standardized BMI Z-scores, overweight and obese children (ages 3-19) were classified by BMI ≥85 th and ≥95 th percentiles, respectively. The adult population (age ≥20) was classified as overweight and obese with BMI measures of 25-29.9 and ≥30, respectively. Blood lead level (BLL) was categorized by weighted quartiles. RESULTS Multivariate linear regressions revealed a lower BMI Z-score in children and adolescents when the highest lead quartile was compared to the lowest lead quartile (β (SE)=-0.33 (0.07), p<0.001), and a decreased BMI in adults (β (SE)=-2.58 (0.25), p<0.001). Multiple logistic analyses in children and adolescents found a negative association between BLL and the percentage of obese and overweight with BLL in the highest quartile compared to the lowest quartile (OR=0.42, 95% CI: 0.30-0.59; and OR=0.67, 95% CI: 0.52-0.88, respectively). Adults in the highest lead quartile were less likely to be obese (OR=0.42, 95% CI: 0.35-0.50) compared to those in the lowest lead quartile. Further analyses with blood lead as restricted cubic splines, confirmed the dose-relationship between blood lead and body weight outcomes. CONCLUSIONS BLLs are associated with lower body mass index and obesity in children, adolescents and adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.