17 resultados para Spirometry.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES Age- and height-adjusted spirometric lung function of South Asian children is lower than those of white children. It is unclear whether this is purely genetic, or partly explained by the environment. In this study, we assessed whether cultural factors, socioeconomic status, intrauterine growth, environmental exposures, or a family and personal history of wheeze contribute to explaining the ethnic differences in spirometric lung function. METHODS We studied children aged 9 to 14 years from a population-based cohort, including 1088 white children and 275 UK-born South Asians. Log-transformed spirometric data were analyzed using multiple linear regressions, adjusting for anthropometric factors. Five different additional models adjusted for (1) cultural factors, (2) indicators of socioeconomic status, (3) perinatal data reflecting intrauterine growth, (4) environmental exposures, and (5) personal and family history of wheeze. RESULTS Height- and gender-adjusted forced vital capacity (FVC) and forced expired volume in 1 second (FEV1) were lower in South Asian than white children (relative difference -11% and -9% respectively, P < .001), but PEF and FEF50 were similar (P ≥ .5). FEV1/FVC was higher in South Asians (1.8%, P < .001). These differences remained largely unchanged in all 5 alternative models. CONCLUSIONS Our study confirmed important differences in lung volumes between South Asian and white children. These were not attenuated after adjustment for cultural and socioeconomic factors and intrauterine growth, neither were they explained by differences in environmental exposures nor a personal or family history of wheeze. This suggests that differences in lung function may be mainly genetic in origin. The implication is that ethnicity-specific predicted values remain important specifically for South Asian children.
Resumo:
METHODS Spirometry datasets from South-Asian children were collated from four centres in India and five within the UK. Records with transcription errors, missing values for height or spirometry, and implausible values were excluded(n = 110). RESULTS Following exclusions, cross-sectional data were available from 8,124 children (56.3% male; 5-17 years). When compared with GLI-predicted values from White Europeans, forced expired volume in 1s (FEV1) and forced vital capacity (FVC) in South-Asian children were on average 15% lower, ranging from 4-19% between centres. By contrast, proportional reductions in FEV1 and FVC within all but two datasets meant that the FEV1/FVC ratio remained independent of ethnicity. The 'GLI-Other' equation fitted data from North India reasonably well while 'GLI-Black' equations provided a better approximation for South-Asian data than the 'GLI-White' equation. However, marked discrepancies in the mean lung function z-scores between centres especially when examined according to socio-economic conditions precluded derivation of a single South-Asian GLI-adjustment. CONCLUSION Until improved and more robust prediction equations can be derived, we recommend the use of 'GLI-Black' equations for interpreting most South-Asian data, although 'GLI-Other' may be more appropriate for North Indian data. Prospective data collection using standardised protocols to explore potential sources of variation due to socio-economic circumstances, secular changes in growth/predictors of lung function and ethnicities within the South-Asian classification are urgently required.
Resumo:
BACKGROUND: The pathology of pediatric severe therapy-resistant asthma (STRA) is little understood. OBJECTIVES: We hypothesized that STRA in children is characterized by airway eosinophilia and mast cell inflammation and is driven by the T(H)2 cytokines IL-4, IL-5, and IL-13. METHODS: Sixty-nine children (mean age, 11.8 years; interquartile range, 5.6-17.3 years; patients with STRA, n = 53; control subjects, n = 16) underwent fiberoptic bronchoscopy, bronchoalveolar lavage (BAL), and endobronchial biopsy. Airway inflammation, remodeling, and BAL fluid and biopsy specimen T(H)2 cytokines were quantified. Children with STRA also underwent symptom assessment (Asthma Control Test), spirometry, exhaled nitric oxide and induced sputum evaluation. RESULTS: Children with STRA had significantly increased BAL fluid and biopsy specimen eosinophil counts compared with those found in control subjects (BAL fluid, P < .001; biopsy specimen, P < .01); within the STRA group, there was marked between-patient variability in eosinophilia. Submucosal mast cell, neutrophil, and lymphocyte counts were similar in both groups. Reticular basement membrane thickness and airway smooth muscle were increased in patients with STRA compared with those found in control subjects (P < .0001 and P < .001, respectively). There was no increase in BAL fluid IL-4, IL-5, or IL-13 levels in patients with STRA compared with control subjects, and these cytokines were rarely detected in induced sputum. Biopsy IL-5(+) and IL-13(+) cell counts were also not higher in patients with STRA compared with those seen in control subjects. The subgroup (n = 15) of children with STRA with detectable BAL fluid T(H)2 cytokines had significantly lower lung function than those with undetectable BAL fluid T(H)2 cytokines. CONCLUSIONS: STRA in children was characterized by remodeling and variable airway eosinophil counts. However, unlike in adults, there was no neutrophilia, and despite the wide range in eosinophil counts, the T(H)2 mediators that are thought to drive allergic asthma were mostly absent.
Resumo:
BACKGROUND: Although lung clearance index (LCI) is a sensitive indicator of mild cystic fibrosis (CF) lung disease, it is rarely measured due to lengthy protocols and the commercial unavailability of multiple-breath washout (MBW) setups and tracer gases. We used a newly validated, commercially available nitrogen (N(2) ) MBW setup to assess success rate, duration, and variability of LCI within a 20 min timeframe, during clinical routine. We also evaluated the relationship between LCI and other clinical markers of CF lung disease. METHODS: One hundred thirty six children (83 with CF) between 4 and 16 years were studied in a pediatric CF outpatient setting. One hundred eighteen out of 136 children were naïve to MBW. Within 20 min, each child was trained, N(2) MBW was performed, and LCI was analyzed. We assessed intra- and between-test reproducibility in a subgroup of children. RESULTS: At least one LCI was feasible in 123 (90%) children, with a mean (range) of 3.3 (1.2-6.4) min per test. Two or more measurements were feasible in 56 (41%) children. Comparing LCI in CF versus controls, LCI mean (SD) was 12.0 (3.9) versus 6.1 (0.9), and the intra- and inter-test coefficient of repeatability was 1.00 versus 0.81 and 0.96 versus 0.62, respectively. LCI was correlated with spirometry, blood gases, and Pseudomonas aeruginosa infection. CONCLUSIONS: Using available N(2) MBW equipment, LCI measurements are practical and fast in children. LCI is correlated with markers of CF lung disease. Longer timeframes would be required for triplicate N(2) MBW tests in inexperienced children. Pediatr Pulmonol. © 2012 Wiley Periodicals, Inc.
Resumo:
Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed. Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.
Resumo:
BACKGROUND: Functional deterioration in cystic fibrosis (CF) may be reflected by increasing bronchial obstruction and, as recently shown, by ventilation inhomogeneities. This study investigated which physiological factors (airway obstruction, ventilation inhomogeneities, pulmonary hyperinflation, development of trapped gas) best express the decline in lung function, and what role specific CFTR genotypes and different types of bronchial infection may have upon this process. METHODS: Serial annual lung function tests, performed in 152 children (77 males; 75 females) with CF (age range: 6-18 y) provided data pertaining to functional residual capacity (FRCpleth, FRCMBNW), volume of trapped gas (VTG), effective specific airway resistance (sReff), lung clearance index (LCI), and forced expiratory indices (FVC, FEV1, FEF50). RESULTS: All lung function parameters showed progression with age. Pulmonary hyperinflation (FRCpleth > 2SDS) was already present in 39% of patients at age 6-8 yrs, increasing to 67% at age 18 yrs. The proportion of patients with VTG > 2SDS increased from 15% to 54% during this period. Children with severe pulmonary hyperinflation and trapped gas at age 6-8 yrs showed the most pronounced disease progression over time. Age related tracking of lung function parameters commences early in life, and is significantly influenced by specific CFTR genotypes. The group with chronic P. aeruginosa infection demonstrated most rapid progression in all lung function parameters, whilst those with chronic S. aureus infection had the slowest rate of progression. LCI, measured as an index of ventilation inhomogeneities was the most sensitive discriminator between the 3 types of infection examined (p < 0.0001). CONCLUSION: The relationships between lung function indices, CFTR genotypes and infective organisms observed in this study suggest that measurement of other lung function parameters, in addition to spirometry alone, may provide important information about disease progression in CF.
Resumo:
BACKGROUND: During sleep, ventilation and functional residual capacity (FRC) decrease slightly. This study addresses regional lung aeration during wakefulness and sleep. METHODS: Ten healthy subjects underwent spirometry awake and with polysomnography, including pulse oximetry, and also CT when awake and during sleep. Lung aeration in different lung regions was analyzed. Another three subjects were studied awake to develop a protocol for dynamic CT scanning during breathing. RESULTS: Aeration in the dorsal, dependent lung region decreased from a mean of 1.14 +/- 0.34 mL (+/- SD) of gas per gram of lung tissue during wakefulness to 1.04 +/- 0.29 mL/g during non-rapid eye movement (NREM) sleep (- 9%) [p = 0.034]. In contrast, aeration increased in the most ventral, nondependent lung region, from 3.52 +/- 0.77 to 3.73 +/- 0.83 mL/g (+ 6%) [p = 0.007]. In one subject studied during rapid eye movement (REM) sleep, aeration decreased from 0.84 to 0.65 mL/g (- 23%). The fall in dorsal lung aeration during sleep correlated to awake FRC (R(2) = 0.60; p = 0.008). Airway closure, measured awake, occurred near and sometimes above the FRC level. Ventilation tended to be larger in dependent, dorsal lung regions, both awake and during sleep (upper region vs lower region, 3.8% vs 4.9% awake, p = 0.16, and 4.5% vs 5.5% asleep, p = 0.09, respectively). CONCLUSIONS: Aeration is reduced in dependent lung regions and increased in ventral regions during NREM and REM sleep. Ventilation was more uniformly distributed between upper and lower lung regions than has previously been reported in awake, upright subjects. Reduced respiratory muscle tone and airway closure are likely causative factors.
Resumo:
PURPOSE: Gender-specific differences in substrate utilization during exercise have been reported, typically such that women rely more on fat than men. This study investigated whether gender differences exist in the utilization of intramyocellular lipids (IMCL) and glycogen. METHODS: IMCL and glycogen, as well as total fat and carbohydrate (CHO) oxidation were measured in nine males and nine females before, during, and after an endurance exercise. The trained subjects exercised on a bicycle ergometer at 50% maximal workload for 3 h. IMCL and glycogen were determined in the thigh by magnetic resonance spectroscopy. Oxygen uptake (VO(2)) and carbon dioxide production were determined by open circuit spirometry to calculate total fat and CHO oxidation. Relative power output, percent of maximum heart rate, VO(2peak), and respiratory exchange ratio were the same. RESULTS: Average fat oxidation was the same, whereas CHO oxidation was significantly higher in males compared with females. The relative contribution of these fuels to total energy used were similar in males and females. Males and females depleted IMCL and glycogen significantly (P < 0.001) during the 3-h exercise. IMCL levels at rest (P < 0.05) and its depletion during exercise (P < 0.001) were significantly higher in males compared with females, whereas glycogen was stored and used in the same range by both genders. CONCLUSION: During this 3-h exercise, energy supplies from fat and CHO were similar in both genders, and males as well as females reduced their IMCL stores significantly. The larger contribution of IMCL during exercise in males compared with females could either be a result of gender-specific substrate selection, or different long-term training habit.
Resumo:
OBJECTIVES: Residual airspace following thoracic resections is a common clinical problem. Persistent air leak, prolonged drainage time, and reduced hemostasis extend hospital stay and morbidity. We report a trial of pharmacologic-induced diaphragmatic paralysis through continuous paraphrenic injection of lidocaine to reduced residual airspace. The objectives were confirmation of diaphragmatic paralysis and possible procedure related complications. METHODS: Six eligible patients undergoing resectional surgery (lobectomy or bilobectomy) were included. Inclusion criteria consisted of: postoperative predicted FEV1 greater than 1300 ml, right-sided resection, absence of parenchymal lung disease, no class III antiarrhythmic therapy, absence of hypersensitivity reactions to lidocaine, no signs of infection, and informed consent. Upon completion of resection an epidural catheter was attached in the periphrenic tissue on the proximal pericardial surface, externalized through a separate parasternal incision, and connected to a perfusing system injecting lidocaine 1% at a rate of 3 ml/h (30 mg/h). Postoperative ICU surveillance for 24h and daily measurement of vital signs, drainage output, and bedside spirometry were performed. Within 48 h fluoroscopic confirmation of diaphragmatic paralysis was obtained. The catheter removal coincided with the chest tube removal when no procedural related complications occurred. RESULTS: None of the patients reported respiratory impairment. Diaphragmatic paralysis was documented in all patients. Upon removal of catheter or discontinuation of lidocaine prompt return of diaphragmatic motility was noticed. Two patients showed postoperative hemodynamic irrelevant atrial fibrillation. CONCLUSION: Postoperative paraphrenic catheter administration of lidocaine to ensure reversible diaphragmatic paralysis is safe and reproducible. Further studies have to assess a benefit in terms of reduction in morbidity, drainage time, and hospital stay, and determine the patients who will profit.
Resumo:
Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies.
Resumo:
RATIONALE Histologic data from fatal cases suggest that extreme prematurity results in persisting alveolar damage. However, there is new evidence that human alveolarization might continue throughout childhood and could contribute to alveolar repair. OBJECTIVES To examine whether alveolar damage in extreme-preterm survivors persists into late childhood, we compared alveolar dimensions between schoolchildren born term and preterm, using hyperpolarized helium-3 magnetic resonance. METHODS We recruited schoolchildren aged 10-14 years stratified by gestational age at birth (weeks) to four groups: (1) term-born (37-42 wk; n = 61); (2) mild preterm (32-36 wk; n = 21); (3) extreme preterm (<32 wk, not oxygen dependent at 4 wk; n = 19); and (4) extreme preterm with chronic lung disease (<32 wk and oxygen dependent beyond 4 wk; n = 18). We measured lung function using spirometry and plethysmography. Apparent diffusion coefficient, a surrogate for average alveolar dimensions, was measured by helium-3 magnetic resonance. MEASUREMENTS AND MAIN RESULTS The two extreme preterm groups had a lower FEV1 (P = 0.017) compared with term-born and mild preterm children. Apparent diffusion coefficient was 0.092 cm(2)/second (95% confidence interval, 0.089-0.095) in the term group. Corresponding values were 0.096 (0.091-0.101), 0.090 (0085-0.095), and 0.089 (0.083-0.094) in the mild preterm and two extreme preterm groups, respectively, implying comparable alveolar dimensions across all groups. Results did not change after controlling for anthropometric variables and potential confounders. CONCLUSIONS Alveolar size at school age was similar in survivors of extreme prematurity and term-born children. Because extreme preterm birth is associated with deranged alveolar structure in infancy, the most likely explanation for our finding is catch-up alveolarization.
Resumo:
BACKGROUND The issue of phrenic nerve preservation during pneumonectomy is still an unanswered question. So far, its direct effect on immediate postoperative pulmonary lung function has never been evaluated in a prospective trial. METHODS We conducted a prospective crossover study including 10 patients undergoing pneumonectomy for lung cancer between July 2011 and July 2012. After written informed consent, all consecutive patients who agreed to take part in the study and in whom preservation of the phrenic nerve during operation was possible, were included in the study. Upon completion of lung resection, a catheter was placed in the proximal paraphrenic tissue on the pericardial surface. After an initial phase of recovery of 5 days all patients underwent ultrasonographic assessment of diaphragmatic motion followed by lung function testing with and without induced phrenic nerve palsy. The controlled, temporary paralysis of the ipsilateral hemidiaphragm was achieved by local administration of lidocaine 1% at a rate of 3 mL/h (30 mg/h) via the above-mentioned catheter. RESULTS Temporary phrenic nerve palsy was accomplished in all but 1 patient with suspected catheter dislocation. Spirometry showed a significant decrease in dynamic lung volumes (forced expiratory volume in 1 second and forced vital capacity; p < 0.05) with the paralyzed hemidiaphragm. Blood oxygen saturation levels did not change significantly. CONCLUSIONS Our results show that phrenic nerve palsy causes a significant impairment of dynamic lung volumes during the early postoperative period after pneumonectomy. Therefore, in these already compromised patients, intraoperative phrenic nerve injury should be avoided whenever possible.
Resumo:
BACKGROUND Small airways disease is a hallmark in adults with persistent asthma, but little is known about small airways function in children with mild asthma and normal spirometry. We assessed ventilation heterogeneity, a marker of small airways function, with an easy tidal breath single-breath washout (SBW) technique in school-aged children with mild asthma and normal FEV1 and healthy age-matched control subjects. METHODS The primary outcome was the double-tracer gas phase III slope (SDTG), an index of ventilation heterogeneity in acinar airways derived from the tidal double-tracer gas SBW test. The second outcome was the nitrogen phase III slope (SN2), an index of global ventilation heterogeneity derived from the tidal nitrogen SBW test using pure oxygen. Triplicate SBW and spirometry tests were performed in healthy children (n = 35) and children with asthma (n = 31) at baseline and in children with asthma after bronchodilation. RESULTS Acinar (SDTG) but not global (SN2) ventilation heterogeneity was significantly increased in asthma despite normal FEV1. Of the 31 children with asthma, abnormal results were found for SDTG (≤ -2 z scores) in 11; forced expiratory flow, midexpiratory phase (FEF25%-75%) in three; and FEV1 in zero. After bronchodilation, SDTG, SN2, FEF25%-75%, and FEV1 significantly changed (mean [95% CI] change from baseline, 36% [15%-56%], 38% [18%-58%], 17% [9-25%], and 6% [3%-9%], respectively). CONCLUSIONS Abnormal acinar ventilation heterogeneity in one-third of the children suggests that small airways disease may be present despite rare and mild asthma symptoms and normal spirometry. The easy tidal SBW technique has considerable potential as a clinical and research outcome in children with asthma.
Resumo:
Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.
Resumo:
BACKGROUND Previous studies found larger lung volumes at school-age in formerly breastfed children, with some studies suggesting an effect modification by maternal asthma. We wanted to explore this further in children who had undergone extensive lung function testing. The current study aimed to assess whether breastfeeding was associated with larger lung volumes and, if so, whether all compartments were affected. We also assessed association of breastfeeding with apparent diffusion coefficient (ADC), which measures freedom of gas diffusion in alveolar-acinar compartments and is a surrogate of alveolar dimensions. Additionally, we assessed whether these effects were modified by maternal asthma. METHODS We analysed data from 111 children and young adults aged 11-21 years, who had participated in detailed lung function testing, including spirometry, plethysmography and measurement of ADC of (3)Helium ((3)He) by MR. Information on breastfeeding came from questionnaires applied in early childhood (age 1-4 years). We determined the association between breastfeeding and these measurements using linear regression, controlling for potential confounders. RESULTS We did not find significant evidence for an association between duration of breastfeeding and lung volumes or alveolar dimensions in the entire sample. In breastfed children of mothers with asthma, we observed larger lung volumes and larger average alveolar size than in non-breastfed children, but the differences did not reach significance levels. CONCLUSIONS Confirmation of effects of breastfeeding on lung volumes would have important implications for public health. Further investigations with larger sample sizes are warranted.