41 resultados para Spiders

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defensins are a major family of antimicrobial peptides found throughout the phylogenetic tree. From the spider species: Cupiennius salei, Phoneutria reidyi, Polybetes pythagoricus, Tegenaria atrica, and Meta menardi, defensins belonging to the 'ancestral' class of invertebrate defensins were cloned and sequenced. The deduced amino acid sequences contain the characteristic six cysteines of this class of defensins and reveal precursors of 60 or 61 amino acid residues. The mature peptides consist of 37 amino acid residues, showing up to 70% identities with tick and scorpion defensins. In C. salei, defensin mRNA was found to be constitutively expressed in hemocytes, ovaries, subesophageal nerve mass, hepatopancreas, and muscle tissue. This is the first report presenting and comparing antimicrobial peptides belonging to the family of defensins from spiders.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review on all spider venom components known by the end of 2010 bases on 1618 records for venom compounds from 174 spider species (= 0.41% of all known species) belonging to 32 families (= 29% of all existing spider families). Spiders investigated for venom research are either big (many mygalomorph species, Nephilidae, Ctenidae and Sparassidae) or medically important for humans (e.g. Loxosceles or Latrodectus species). Venom research widely ignored so far the two most species-rich families (Salticidae and Linyphiidae) and strongly neglected several other very abundant families (Araneidae, Lycosidae, Theridiidae, Thomisidae and Gnaphosidae). We grouped the known 1618 records for venom compounds into six categories: low molecular mass compounds (16 % of all compounds), acylpolyamines (11 %), linear peptides (6 %), cysteine-knotted mini-proteins (60 %), neurotoxic proteins (1 %) and enzymes (6 %). Low molecular mass compounds are known from many spider families and contain organic acids, nucleosides, nucleotides, amino acids, amines, polyamines, and some further substances, many of them acting as neurotransmitters. Acylpolyamines contain amino acids (Araneidae and Nephilidae) or not (several other families) and show a very high diversity within one species. Linear peptides, also called cytolytic, membranolytic or antimicrobial, exert a highly specific structure and are so far only known from Ctenidae, Lycosidae, Oxyopidae and Zodariidae. Cysteine-knotted mini-proteins represent the majority of venom compounds because research so far focused on them. They probably occur in most but not all spider families. Neurotoxic proteins so far are only known from theridiid spiders. Enzymes had been neglected for some time but meanwhile it becomes obvious that they play an important role in spider venoms. Sixteen enzymes either cleave polymers in the extracellular matrix or target phospholipids and related compounds in membranes. The overall structure of these compounds is given and the function, as far as it is known, is described. Since several of these component groups are presented in one average spider venom, we discuss the known interactions and synergisms and give reasons for such a functional redundancy. We also discuss main evolutionary pathways for spider venom compounds such as high variability among components of one group, synergistic interactions between cysteine-knotted mini-proteins and other components (low molecular mass compounds and linear peptides), change of function from ion-channel acting mini-proteins to cytolytic effects and replacement of mini-proteins by linear peptides, acylpolyamines, large proteins or enzymes. We also add first phylogenetic considerations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O(2), pure CO(2), or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO(2) treatment than in the O(2) treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat. J. Exp. Zool. 307A:549-555, 2007. (c) 2007 Wiley-Liss, Inc.