119 resultados para Spherical shape

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brushite and octacalcium phosphate (OCP) crystals are well-known precursors of hydroxylapatite (HAp), the main mineral found in bone. In this report, we present a new method for biomimicking brushite and OCP using single and double diffusion techniques. Brushite and OCP crystals were grown in an iota-carrageenan gel. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed different morphologies of brushite crystals from highly porous aggregates to plate-shaped forms. OCP crystals grown in iota-carrageenan showed a porous spherical shape different from brushite growth forms. The XRD method demonstrated that the single-diffusion method favors the formation of monoclinic brushite. In contrast, the double diffusion method was found to promote the formation of the triclinic octacalcium phosphate OCP phase. By combining the different parameters for crystal growth in carrageenan, such as ion concentration, gel pH and gel density, it is possible to modify the morphology of composite crystals, change the phase of calcium phosphate and modulate the amount of carrageenan inclusion in crystals. This study suggests that iota-carrageenan is a high-molecular-weight polysaccharide that is potentially applicable for controlling calcium phosphate crystallization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prevention and treatment of osteoporosis rely on understanding of the micromechanical behaviour of bone and its influence on fracture toughness and cell-mediated adaptation processes. Postyield properties may be assessed by nonlinear finite element simulations of nanoindentation using elastoplastic and damage models. This computational study aims at determining the influence of yield surface shape and damage on the depth-dependent response of bone to nanoindentation using spherical and conical tips. Yield surface shape and damage were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic-to-total work ratio is well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not statistically significant (p<0.0001). For spherical tips, damage was not a significant parameter (p<0.0001). The gained knowledge can be used for developing an inverse method for identification of postelastic properties of bone from nanoindentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present evidence for differential roles of Rho-kinase and myosin light chain kinase (MLCK) in regulating shape, adhesion, migration, and chemotaxis of human fibrosarcoma HT1080 cells on laminin-coated surfaces. Pharmacological inhibition of Rho-kinase by Y-27632 or inhibition of MLCK by W-7 or ML-7 resulted in significant attenuation of constitutive myosin light chain phosphorylation. Rho-kinase inhibition resulted in sickle-shaped cells featuring long, thin F-actin-rich protrusions. These cells adhered more strongly to laminin and migrated faster. Inhibition of MLCK in contrast resulted in spherical cells and marked impairment of adhesion and migration. Inhibition of myosin II activation with blebbistatin resulted in a morphology similar to that induced by Y-27632 and enhanced migration and adhesion. Cells treated first with blebbistatin and then with ML-7 also rounded up, suggesting that effects of MLCK inhibition on HT1080 cell shape and motility are independent of inhibition of myosin activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9-2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km(3) +/- 0.1 km(3). With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet's center-of-mass, we extrapolated this value to an overall volume of 18.7 km(3) +/- 1.2 km(3), and, with a current best estimate of 1.0 X 10(13) kg for the mass, we derive a bulk density of 535 kg/m(3) +/- 35 kg/m(3). Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 +/- 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14 degrees, a cone center position at 69.54 degrees/64.11 degrees (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35 degrees right-hand-rule eastern longitude and -0.28 degrees latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventeen bones (sixteen cadaveric bones and one plastic bone) were used to validate a method for reconstructing a surface model of the proximal femur from 2D X-ray radiographs and a statistical shape model that was constructed from thirty training surface models. Unlike previously introduced validation studies, where surface-based distance errors were used to evaluate the reconstruction accuracy, here we propose to use errors measured based on clinically relevant morphometric parameters. For this purpose, a program was developed to robustly extract those morphometric parameters from the thirty training surface models (training population), from the seventeen surface models reconstructed from X-ray radiographs, and from the seventeen ground truth surface models obtained either by a CT-scan reconstruction method or by a laser-scan reconstruction method. A statistical analysis was then performed to classify the seventeen test bones into two categories: normal cases and outliers. This classification step depends on the measured parameters of the particular test bone. In case all parameters of a test bone were covered by the training population's parameter ranges, this bone is classified as normal bone, otherwise as outlier bone. Our experimental results showed that statistically there was no significant difference between the morphometric parameters extracted from the reconstructed surface models of the normal cases and those extracted from the reconstructed surface models of the outliers. Therefore, our statistical shape model based reconstruction technique can be used to reconstruct not only the surface model of a normal bone but also that of an outlier bone.