5 resultados para Spectrophotometry, Atomic Absorption

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sequential studies of osteopenic bone disease in small animals require the availability of non-invasive, accurate and precise methods to assess bone mineral content (BMC) and bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA), which is currently used in humans for this purpose, can also be applied to small animals by means of adapted software. Precision and accuracy of DXA was evaluated in 10 rats weighing 50-265 g. The rats were anesthetized with a mixture of ketamine-xylazine administrated intraperitoneally. Each rat was scanned six times consecutively in the antero-posterior incidence after repositioning using the rat whole-body software for determination of whole-body BMC and BMD (Hologic QDR 1000, software version 5.52). Scan duration was 10-20 min depending on rat size. After the last measurement, rats were sacrificed and soft tissues were removed by dermestid beetles. Skeletons were then scanned in vitro (ultra high resolution software, version 4.47). Bones were subsequently ashed and dissolved in hydrochloric acid and total body calcium directly assayed by atomic absorption spectrophotometry (TBCa[chem]). Total body calcium was also calculated from the DXA whole-body in vivo measurement (TBCa[DXA]) and from the ultra high resolution measurement (TBCa[UH]) under the assumption that calcium accounts for 40.5% of the BMC expressed as hydroxyapatite. Precision error for whole-body BMC and BMD (mean +/- S.D.) was 1.3% and 1.5%, respectively. Simple regression analysis between TBCa[DXA] or TBCa[UH] and TBCa[chem] revealed tight correlations (n = 0.991 and 0.996, respectively), with slopes and intercepts which were significantly different from 1 and 0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major myonecrotic zinc containing metalloprotease 'malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu- Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A? followed by B subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the dental erosion process in children. The aim of the present study was to test fruit yogurt, a popular snack for children, and the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine their erosive potential. METHOD AND MATERIALS: A variety of fruit yogurt was tested. To test the pH, 8 readings were taken with a pH electrode for each yogurt. Calcium content was detected by atomic absorption spectrophotometer, phosphorus by the inductively coupled plasma method, and fluoride content by ion chromatography. The degrees of saturation of hydroxyapatite and fluorapatite were calculated by use of a computer program. Statistical analysis was performed using 2-tailed analysis of variance (P < .05) and a post hoc test (Tukey) to determine differences between groups. RESULTS: The pH of each fruit concentrate was significantly different, except for banana yogurt. Except for the phosphorus content of raspberry yogurt, the calcium and phosphorus content for each fruit concentrate were significantly different. Fluoride levels were the same for all yogurts tested, and the degrees of saturation of hydroxyapatite and fluorapatite was positive, indicating supersaturation. CONCLUSION: It could be stated that fruit yogurt has no erosive potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.