32 resultados para Species differentiation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur with user-defined populations and statistical averaging within populations. Using simulated data sets generated under a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks, Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle genetic differentiation.
Resumo:
We tested the use of multiplex real-time PCR for detection and quantification of Campylobacter jejuni and Campylobacter coli on broiler carcass neck skin samples collected during 2008 from slaughterhouses in Switzerland. Results from an established TaqMan assay based on two different targets (hipO and ceuE for C. jejuni and C. coli, respectively) were corroborated with data from a newly developed assay based on a single-nucleotide polymorphism in the fusA gene, which allows differentiation between C. jejuni and C. coli. Both multiplex real-time PCRs were applied simultaneously for direct detection, differentiation, and quantification of Campylobacter from 351 neck skin samples and compared with culture methods. There was good correlation in detection and enumeration between real-time PCR results and quantitative culture, with real-time PCR being more sensitive. Overall, 251 (71.5%) of the samples were PCR positive for Campylobacter, with 211 (60.1%) in the hipO-ceuE assays, 244 (69.5%) in the fusA assay, and 204 (58.1%) of them being positive in both PCR assays. Thus, the fusA assay was similarly sensitive to the enrichment culture (72.4% positive); however, it is faster and allows for quantification. In addition, real-time PCR allowed for species differentiation; roughly 60% of positive samples contained C. jejuni, less than 10% C. coli, and more than 30% contained both species. Real-time PCR proved to be a suitable method for direct detection, quantification, and differentiation of Campylobacter from carcasses, and could permit time-efficient surveillance of these zoonotic agents.
Resumo:
Environmental variation in signalling conditions affects animal communication traits, with possible consequences for sexual selection and reproductive isolation. Using spectrophotometry, we studied how male coloration within and between populations of two closely related Lake Victoria cichlid species (Pundamilia pundamilia and P. nyererei) covaries with water transparency. Focusing on coloration patches implicated in sexual selection, we predicted that in clear waters, with broad-spectrum light, (1) colours should become more saturated and (2) shift in hue away from the dominant ambient wavelengths, compared to more turbid waters. We found support for these predictions for the red and yellow coloration of P. nyererei but not the blue coloration of P. pundamilia. This may be explained by the species difference in depth distribution, which generates a steeper gradient in visual conditions for P. nyererei compared to P. pundamilia. Alternatively, the importance of male coloration in intraspecific sexual selection may differ between the species. We also found that anal fin spots, that is, the orange spots on male haplochromine anal fins that presumably mimic eggs, covaried with water transparency in a similar way for both species. This is in contrast to the other body regions studied and suggests that, while indeed functioning as signals, these spots may not play a role in species differentiation.
Resumo:
Species diversity can be lost through two different but potentially interacting extinction processes: demographic decline and speciation reversal through introgressive hybridization. To investigate the relative contribution of these processes, we analysed historical and contemporary data of replicate whitefish radiations from 17 pre-alpine European lakes and reconstructed changes in genetic species differentiation through time using historical samples. Here we provide evidence that species diversity evolved in response to ecological opportunity, and that eutrophication, by diminishing this opportunity, has driven extinctions through speciation reversal and demographic decline. Across the radiations, the magnitude of eutrophication explains the pattern of species loss and levels of genetic and functional distinctiveness among remaining species. We argue that extinction by speciation reversal may be more widespread than currently appreciated. Preventing such extinctions will require that conservation efforts not only target existing species but identify and protect the ecological and evolutionary processes that generate and maintain species.
Resumo:
Mycoplasma mycoides subsp. capri and Mycoplasma mycoides subsp. mycoides LC can be combined into one taxon on the basis of several contributions on both DNA sequence and protein analyses reported in the literature. Moreover, for the differentiation and identification of mycoplasmas of the "mycoides cluster", we investigated the rpoB gene, encoding the beta-subunit of the RNA polymerase. A segment of 527 bp of the rpoB gene was amplified from 31 strains of ruminant mycoplasmas by PCR. The nucleotide sequences were determined and aligned, and accurate genetic relationships were calculated. Cluster analysis of rpoB DNA allowed species differentiation within the "mycoides cluster" and confirmed that M. mycoides subsp. capri and M. mycoides subsp. mycoides LC cannot be distinguished from each other. "Mycoplasma mycoides subsp. capri" is proposed as a common name for both subspecies.
Resumo:
Background: Speciation reversal: the erosion of species differentiation via an increase in introgressive hybridization due to the weakening of previously divergent selection regimes, is thought to be an important, yet poorly understood, driver of biodiversity loss. Our study system, the Alpine whitefish (Coregonus spp.) species complex is a classic example of a recent postglacial adaptive radiation: forming an array of endemic lake flocks, with the independent origination of similar ecotypes among flocks. However, many of the lakes of the Alpine radiation have been seriously impacted by anthropogenic nutrient enrichment, resulting in a collapse in neutral genetic and phenotypic differentiation within the most polluted lakes. Here we investigate the effects of eutrophication on the selective forces that have shaped this radiation, using population genomics. We studied eight sympatric species assemblages belonging to five independent parallel adaptive radiations, and one species pair in secondary contact. We used AFLP markers, and applied FST outlier (BAYESCAN, DFDIST) and logistic regression analyses (MATSAM), to identify candidate regions for disruptive selection in the genome and their associations with adaptive traits within each lake flock. The number of outlier and adaptive trait associated loci identified per lake were then regressed against two variables (historical phosphorus concentration and contemporary oxygen concentration) representing the strength of eutrophication. Results: Whilst we identify disruptive selection candidate regions in all lake flocks, we find similar trends, across analysis methods, towards fewer disruptive selection candidate regions and fewer adaptive trait/candidate loci associations in the more polluted lakes. Conclusions: Weakened disruptive selection and a concomitant breakdown in reproductive isolating mechanisms in more polluted lakes has lead to increased gene flow between coexisting Alpine whitefish species. We hypothesize that the resulting higher rates of interspecific recombination reduce either the number or extent of genomic islands of divergence surrounding loci evolving under disruptive natural selection. This produces the negative trend seen in the number of selection candidate loci recovered during genome scans of whitefish species flocks, with increasing levels of anthropogenic eutrophication: as the likelihood decreases that AFLP restriction sites will fall within regions of heightened genomic divergence and therefore be classified as FST outlier loci. This study explores for the first time the potential effects of human-mediated relaxation of disruptive selection on heterogeneous genomic divergence between coexisting species.
Resumo:
BACKGROUND Staphylococcus aureus has long been recognized as a major pathogen. Methicillin-resistant strains of S. aureus (MRSA) and methicillin-resistant strains of S. epidermidis (MRSE) are among the most prevalent multiresistant pathogens worldwide, frequently causing nosocomial and community-acquired infections. METHODS In the present pilot study, we tested a polymerase chain reaction (PCR) method to quickly differentiate Staphylococci and identify the mecA gene in a clinical setting. RESULTS Compared to the conventional microbiology testing the real-time PCR assay had a higher detection rate for both S. aureus and coagulase-negative Staphylococci (CoNS; 55 vs. 32 for S. aureus and 63 vs. 24 for CoNS). Hands-on time preparing DNA, carrying out the PCR, and evaluating results was less than 5 h. CONCLUSIONS The assay is largely automated, easy to adapt, and has been shown to be rapid and reliable. Fast detection and differentiation of S. aureus, CoNS, and the mecA gene by means of this real-time PCR protocol may help expedite therapeutic decision-making and enable earlier adequate antibiotic treatment.
Resumo:
Aims: Species diversity and genetic diversity may be affected in parallel by similar environmental drivers. However, genetic diversity may also be affected independently by habitat characteristics. We aim at disentangling relationships between genetic diversity, species diversity and habitat characteristics of woody species in subtropical forest. Methods: We studied 11 dominant tree and shrub species in 27 plots in Gutianshan, China, and assessed their genetic diversity (Ar) and population differentiation (F’ST) with microsatellite markers. We tested if Ar and population specific F’ST were correlated to local species diversity and plot characteristics. Multi-model inference and model averaging were used to determine the relative importance of each predictor. Additionally we tested for isolation-by-distance and isolation-by-elevation by regressing pairwise F’ST against pairwise spatial and elevational distances. Important findings: Genetic diversity was not related to species diversity for any of the study species. Thus, our results do not support joint effects of habitat characteristics on these two levels of biodiversity. Instead, genetic diversity in two understory shrubs, Rhododendron simsii and Vaccinium carlesii, was affected by plot age with decreasing genetic diversity in successionally older plots. Population differentiation increased with plot age in Rhododendron simsii and Lithocarpus glaber. This shows that succession can reduce genetic diversity within, and increase genetic diversity between populations. Furthermore, we found four cases of isolation-by-distance and two cases of isolation-by-elevation. The former indicates inefficient pollen and seed dispersal by animals whereas the latter might be due to phenological asynchronies. These patterns indicate that succession can affect genetic diversity without parallel effects on species diversity and that gene flow in a continuous subtropical forest can be restricted even at a local scale.
Resumo:
We examined genetic structure among five species of Lake Victoria haplochromine cichlids in four island communities, using a full factorial sampling design that compared genetic differentiation between pairs of species and populations of varying morphological similarity and geographical proximity. We found that allopatric conspecific populations were on average significantly more strongly differentiated than sympatric heterospecific populations of morphologically similar species. Allopatric heterospecific populations of morphologically dissimilar species were most differentiated. Our work demonstrates that phenotypic divergence can be maintained and perhaps even evolve in sympatry despite considerable gene flow between species. Conversely, phenotypic resemblance among conspecific populations can be maintained despite geographical isolation. Additionally we show that anthropogenically increased hybridization does not affect all sympatric species evenly but predominantly affects morphologically similar and closely related species. This has important implications for the evolution of reproductive isolation between species These findings are also consistent with the hypothesis of speciation reversal due to weakening of divergent selection and reproductive isolation as a consequence of habitat homogenization and offers an evolutionary mechanistic explanation for the observation that species poor assemblages in turbid areas of the lake are characterized by just one or two species in each of a few morphologically distinct genera.
Resumo:
We report the development of a colourimetric PCR/dot blot assay targeting the mitochondrial gene NADH dehydrogenase subunit 1 (nad1) for differential diagnosis of taeniid eggs. Partial sequences of the cestode nad1 gene were aligned and new primers were designed based on conserved regions. Species-specific oligonucleotide probes (S-SONP) for canine taeniid cestodes were then designed manually based on the variable region between the conserved primers. Specifically, S-SONP were designed for the Taenia crassiceps, T. hydatigena, T. multiceps, T. ovis, T. taeniaeformis, Echinococcus granulosus (genotype 1), E. multilocularis and E. vogeli. Each probe showed high specificity as no cross-hybridisation with any amplified nad1 fragment was observed. We evaluated the assay using 49 taeniid egg-positive samples collected from dogs in Zambia. DNA from 5 to 10 eggs was extracted in each sample. Using the PCR/dot blot assay, the probes successfully detected PCR products from T. hydatigena in 42 samples, T. multiceps in 3 samples, and both species (mixed infection) in the remaining 4 samples. The results indicate that the PCR/dot blot assay is a reliable alternative for differential diagnosis of taeniid eggs in faecal samples.
Resumo:
A total of 2538 quarter milk samples from 638 lactating dairy cows from 47 farms in the canton of Bern, Switzerland, were investigated for streptococci. A novel, simple and inexpensive laboratory method was used for the differentiation of Streptococcus species, and a risk factor analysis was carried out. The prevalence in the quarter milk samples was 0.2 per cent for Streptococcus agalactiae, 1.3 per cent for Streptococcus uberis, 1.3 per cent for Streptococcus dysgalactiae, 0.1 per cent for Enterococcus species and 2.9 per cent for minor Streptococcus species (designated Streptococcus-Lactococcus-Enterococcus [SLE] group). Based on the somatic cell count (SCC), S uberis and S dysgalactiae were classified as 'major' pathogens and the bacteria in the SLE group as 'minor' pathogens. For S uberis, S dysgalactiae and bacteria in the SLE group, the most significant risk factor was an intramammary infection (IMI) of a neighbouring quarter by the same pathogen. Other significant risk factors for S uberis infection were a positive California Mastitis Test (CMT) result and a SCC of more than 100,000 cells/ml. Significant risk factors for IMI with S dysgalactiae were a positive CMT result, teat injury and palpable abnormalities in the udder. Infection with bacteria in the SLE group was significantly associated with a SCC of more than 100,000 cells/ml, a lactation number of more than 2, the right rear quarter (as the location of infection) and a positive CMT result.
Discovery of insertion element ISCfe1: a new tool for Campylobacter fetus subspecies differentiation
Resumo:
The species Campylobacter fetus is divided into the subspecies C. fetus subsp. venerealis (CFV) and C. fetus subsp. fetus (CFF). CFV is the causative agent of bovine genital campylobacteriosis, a highly contagious venereal disease that may lead to serious reproductive problems, including sterility and abortion. In contrast, CFF can be isolated from the gastrointestinal tract of a wide range of host species, is associated with abortion in sheep and cattle, and can also be isolated from local and systemic infections in humans. Despite differences in host and niche preferences, microbiological differentiation of the two subspecies of C. fetus is extremely difficult. This study describes the identification of a new insertion element, ISCfe1, which is present exclusively in CFV strains, with highly conserved specific ISCfe1 insertion sites. The results are useful for identification and differentiation of the two C. fetus subspecies and will help in understanding the evolution and pathogenesis of C. fetus.
Resumo:
As a species of major interest for aquaculture, the sex determination system (SDS) of Nile tilapia, Oreochromis niloticus, has been widely investigated. In this species, sex determination is considered to be governed by the interactions between a complex system of genetic sex determination factors (GSD) and the influence of temperature (TSD) during a critical period. Previous studies were exclusively carried out on domestic stocks with the genetic and maintenance limitations associated. Given the wide distribution and adaptation potential of the Nile tilapia, we investigated under controlled conditions the sex determination system of natural populations adapted to three extreme thermal regimes: stable extreme environments in Ethiopia, either cold temperatures in a highland lake (Lake Koka), or warm temperatures in hydrothermal springs (Lake Metahara), and an environment with large seasonal variations in Ghana (Kpandu, Lake Volta). The sex ratio analysis was conducted on progenies reared under constant basal (27 degrees C) or high (36 degrees C) temperatures during the 30 days following yolk-sac resorption. Sex ratios of the progenies reared at standard temperature suggest that the three populations share a similar complex GSD system based on a predominant male heterogametic factor with additional influences of polymorphism at this locus and/or action of minor factors. The three populations presented a clear thermosensitivity of sex differentiation, with large variations in the intensity of response depending on the parents. This confirms the presence of genotype-environment interactions in TSD of Nile tilapia. Furthermore the existence of naturally sex-reversed individuals is strongly suggested in two populations (Kpandu and Koka). However, it was not possible here to infer if the sex-inversion resulted from minor genetic factors and/or environmental influences. The present study demonstrated for the first time the conservation of a complex SDS combining polymorphic GSD and TSD components in natural populations of Nile tilapia. We discuss the evolutionary implications of our findings and highlight the importance of field investigations of sex determination. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.