39 resultados para Spain
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present results from the international field campaign DAURE (Detn. of the sources of atm. Aerosols in Urban and Rural Environments in the Western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during Feb.-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) anal. for elemental and org. carbon (EC and OC) and source apportionment for these data. We combine the results with those from component anal. of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based ests. of biomass burning OC, source apportionment of filter data with inorg. compn. + EC + OC, submicron bulk potassium (K) concns., and gaseous acetonitrile concns. At BCN, 87 % and 91 % of the EC on av., in winter and summer, resp., had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to org. carbon (OC) at BCN was 40 % and 48 %, in winter and summer, resp., and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ∼47 % primary whereas at MSY the fossil OC is mainly secondary (∼85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorol. transport conditions. The estd. biogenic secondary OC at MSY only increased by ∼40 % compared to the order-of-magnitude increase obsd. for biogenic volatile org. compds. (VOCs) between winter and summer, which highlights the uncertainties in the estn. of that component. Biomass burning contributions estd. using the 14C technique ranged from similar to slightly higher than when estd. using other techniques, and the different estns. were highly or moderately correlated. Differences can be explained by the contribution of secondary org. matter (not included in the primary biomass burning source ests.), and/or by an over-estn. of the biomass burning OC contribution by the 14C technique if the estd. biomass burning EC/OC ratio used for the calcns. is too high for this region. Acetonitrile concns. correlate well with the biomass burning EC detd. by 14C. K is a noisy tracer for biomass burning. [on SciFinder(R)]
Seropositivity and Risk Factors Associated with Toxoplasma gondii Infection in Wild Birds from Spain
Resumo:
Toxoplasma gondii is a zoonotic intracellular protozoan parasite of worldwide distribution that infects many species of warm-blooded animals, including birds. To date, there is scant information about the seropositivity of T. gondii and the risk factors associated with T. gondii infection in wild bird populations. In the present study, T. gondii infection was evaluated on sera obtained from 1079 wild birds belonging to 56 species (including Falconiformes (n = 610), Strigiformes (n = 260), Ciconiiformes (n = 156), Gruiformes (n = 21), and other orders (n = 32), from different areas of Spain. Antibodies to T. gondii (modified agglutination test, MAT titer ≥1:25) were found in 282 (26.1%, IC95%:23.5–28.7) of the 1079 birds. This study constitute the first extensive survey in wild birds species in Spain and reports for the first time T. gondii antibodies in the griffon vulture (Gyps fulvus), short-toed snake-eagle (Circaetus gallicus), Bonelli's eagle (Aquila fasciata), golden eagle (Aquila chrysaetos), bearded vulture (Gypaetus barbatus), osprey (Pandion haliaetus), Montagu's harrier (Circus pygargus), Western marsh-harrier (Circus aeruginosus), peregrine falcon (Falco peregrinus), long-eared owl (Asio otus), common scops owl (Otus scops), Eurasian spoonbill (Platalea leucorodia), white stork (Ciconia ciconia), grey heron (Ardea cinerea), common moorhen (Gallinula chloropus); in the International Union for Conservation of Nature (IUCN) “vulnerable” Spanish imperial eagle (Aquila adalberti), lesser kestrel (Falco naumanni) and great bustard (Otis tarda); and in the IUCN “near threatened” red kite (Milvus milvus). The highest seropositivity by species was observed in the Eurasian eagle owl (Bubo bubo) (68.1%, 98 of 144). The main risk factors associated with T. gondii seropositivity in wild birds were age and diet, with the highest exposure in older animals and in carnivorous wild birds. The results showed that T. gondii infection is widespread and can be at a high level in many wild birds in Spain, most likely related to their feeding behaviour.
Resumo:
Petrography, geochemical whole-rock composition, and chemical analyses of tourmaline were performed in order to determine the source areas of Lower Cretaceous Mora, El Castellar, and uppermost Camarillas Formation sandstones from the Iberian Chain, Spain. Sandstones were deposited in intraplate subbasins, which are bound by plutonic and volcanic rocks of Permian, Triassic, and Jurassic age, Paleozoic metamorphic rocks, and Triassic sedimentary rocks. Modal analyses together with petrographic and cathodoluminescence observations allowed us to define three quartz-feldspathic petrofacies and recognize diagenetic processes that modified the original framework composition. Results from average restored petrofacies are: Mora petrofacies = P/F >1 and Q(r)70 F(r)22 R(r)9; El Castellar petrofacies = P/F >1 and Q(r)57 F(r)25 R(r)18; and Camarillas petrofacies = P/F ∼ zero and Q(r)64 F(r)28 R(r)7 (P—plagioclase; F—feldspar; Q—quartz; R—rock fragments; r—restored composition). Trace-element and rare earth element abundances of whole-rock analyses discriminate well between the three petrofacies based on: (1) the Rb concentration, which is indicative of the K content and reflects the amount of K-feldspar modal abundance, and (2) the relative modal abundance of heavy minerals (tourmaline, zircon, titanite, and apatite), which is reproduced by the elements hosted in the observed heavy mineral assemblage (i.e., B and Li for tourmaline; Zr, Hf, and Ta for zircon; Ti, Ta, Nb, and their rare earth elements for titanite; and P, Y, and their rare earth elements for apatite). Tourmaline chemical composition for the three petrofacies ranges from Fe-tourmaline of granitic to Mg-tourmaline of metamorphic origin. The three defined petrofacies suggest a mixed provenance from plutonic and metamorphic source rocks. However, a progressively major influence of granitic source rocks was detected from the lowermost Mora petrofacies toward the uppermost Camarillas petrofacies. This provenance trend is consistent with the uplift and erosion of the Iberian Massif, which coincided with the development of the latest Berriasian synrift regional unconformity and affected all of the Iberian intraplate basins. The uplifting stage of Iberian Massif pluton caused a significant dilution of Paleozoic metamorphic source areas, which were dominant during the sedimentation of the lowermost Mora and El Castellar petrofacies. The association of petrographic data with whole-rock geochemical compositions and tourmaline chemical analysis has proved to be useful for determining source area characteristics, their predominance, and the evolution of source rock types during the deposition of quartz-feldspathic sandstones in intraplate basins. This approach ensures that provenance interpretation is consistent with the geological context.