26 resultados para Space Telescope Science Institute (U.S.)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of Ag = 0.40 ± 0.12 across 290-450 nm and Ag < 0.12 across 450-570 nm at 1σ confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond ~450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.
Resumo:
The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission (expected to launch in 2017) dedicated to search for exoplanet transits by means of ultra-high precision photometry. CHEOPS will provide accurate radii for planets down to Earth size. Targets will mainly come from radial velocity surveys. The CHEOPS instrument is an optical space telescope of 30 cm clear aperture with a single focal plane CCD detector. The tube assembly is passively cooled and thermally controlled to support high precision, low noise photometry. The telescope feeds a re-imaging optic, which supports the straylight suppression concept to achieve the required Signal to Noise. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
A scientific forum on “The Future Science of Exoplanets and Their Systems,” sponsored by Europlanet* and the International Space Science Institute (ISSI)† and co-organized by the Center for Space and Habitability (CSH)‡ of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2–3 years.
Resumo:
Is numerical mimicry a third way of establishing truth? Kevin Heng received his M.S. and Ph.D. in astrophysics from the Joint Institute for Laboratory Astrophysics (JILA) and the University of Colorado at Boulder. He joined the Institute for Advanced Study in Princeton from 2007 to 2010, first as a Member and later as the Frank & Peggy Taplin Member. From 2010 to 2012 he was a Zwicky Prize Fellow at ETH Z¨urich (the Swiss Federal Institute of Technology). In 2013, he joined the Center for Space and Habitability (CSH) at the University of Bern, Switzerland, as a tenure-track assistant professor, where he leads the Exoplanets and Exoclimes Group. He has worked on, and maintains, a broad range of interests in astrophysics: shocks, extrasolar asteroid belts, planet formation, fluid dynamics, brown dwarfs and exoplanets. He coordinates the Exoclimes Simulation Platform (ESP), an open-source set of theoretical tools designed for studying the basic physics and chemistry of exoplanetary atmospheres and climates (www.exoclime.org). He is involved in the CHEOPS (Characterizing Exoplanet Satellite) space telescope, a mission approved by the European Space Agency (ESA) and led by Switzerland. He spends a fair amount of time humbly learning the lessons gleaned from studying the Earth and Solar System planets, as related to him by atmospheric, climate and planetary scientists. He received a Sigma Xi Grant-in-Aid of Research in 2006
Resumo:
The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.