17 resultados para Sound production by animals.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional view of a predominant inferior parietal representation of gestures has been recently challenged by neuroimaging studies demonstrating that gesture production and discrimination may critically depend on inferior frontal lobe function. The aim of the present work was therefore to investigate the effect of transient disruption of these brain sites by continuous theta burst stimulation (cTBS) on gesture production and recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes 17 alpha-hydroxylation needed for cortisol synthesis and 17,20 lyase activity needed to produce sex steroids. Serine phosphorylation of P450c17 specifically increases 17,20 lyase activity, but the physiological factors regulating this effect remain unknown. Treating human adrenal NCI-H295A cells with the phosphatase inhibitors okadaic acid, fostriecin, and cantharidin increased 17,20 lyase activity, suggesting involvement of protein phosphatase 2A (PP2A) or 4 (PP4). PP2A but not PP4 inhibited 17,20 lyase activity in microsomes from cultured cells, but neither affected 17 alpha-hydroxylation. Inhibition of 17,20 lyase activity by PP2A was concentration-dependent, could be inhibited by okadaic acid, and was restored by endogenous protein kinases. PP2A but not PP4 coimmunoprecipitated with P450c17, and suppression of PP2A by small interfering RNA increased 17,20 lyase activity. Phosphoprotein SET found in adrenals inhibited PP2A, but not PP4, and fostered 17,20 lyase activity. The identification of PP2A and SET as post-translational regulators of androgen biosynthesis suggests potential additional mechanisms contributing to adrenarche and hyperandrogenic disorders such as polycystic ovary syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To measure nitric oxide (NO) concentrations in serum, urine, and synovial fluid (SF) of dogs with naturally occurring cranial cruciate ligament (CCL) rupture and normal dogs, and to compare these with clinical and histologic changes of osteoarthritis (OA). STUDY DESIGN Prospective clinical study including 2 groups of animals selected from the hospital population. ANIMALS Forty-three dogs (CCL group) with OA secondary to CCL rupture; 30 healthy dogs (control group) without CCL rupture. METHODS Serum, urine, and SF were collected before and during surgery in the CCL group or immediately after euthanasia in the control group. Articular cartilage and synovial membrane tissue specimens were prepared for routine histologic examination. The stable end products of NO, total nitrite and nitrate (NOt) activity, were measured in body fluids and compared with macroscopic and histologic degrees of OA. Urinary NOt concentration was compared with urinary creatinine concentration and stated as urinary NOt:creatinine ratio (UNCR). RESULTS-SF NOt concentrations were not significantly different between the 2 groups. Serum NOt concentrations (45.6 vs 28.9 micromol/L; P =.042) and the UNCR (0.007 vs 0.004; P =.035) were significantly higher in dogs of the CCL group compared with the control population. An association between UNCR and histologic and macroscopical OA grades could be demonstrated. CONCLUSION UNCR might be a useful indicator of nitrite and nitrate production and, therefore, osteoarthritic changes in joints. CLINICAL RELEVANCE UNCR could be used as a tool to evaluate the NOt production by joint tissues over time and might therefore provide a method of evaluating the effects of drugs in the control of osteoarthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>1. Proliferative kidney disease (PKD) is a disease of salmonid fish caused by the endoparasitic myxozoan, Tetracapsuloides bryosalmonae, which uses freshwater bryozoans as primary hosts. Clinical PKD is characterised by a temperature-dependent proliferative and inflammatory response to parasite stages in the kidney.;2. Evidence that PKD is an emerging disease includes outbreaks in new regions, declines in Swiss brown trout populations and the adoption of expensive practices by fish farms to reduce heavy losses. Disease-related mortality in wild fish populations is almost certainly underestimated because of e.g. oversight, scavenging by wild animals, misdiagnosis and fish stocking.;3. PKD prevalences are spatially and temporally variable, range from 0 to 90-100% and are typically highest in juvenile fish.;4. Laboratory and field studies demonstrate that (i) increasing temperatures enhance disease prevalence, severity and distribution and PKD-related mortality; (ii) eutrophication may promote outbreaks. Both bryozoans and T. bryosalmonae stages in bryozoans undergo temperature- and nutrient-driven proliferation.;5. Tetracapsuloides bryosalmonae is likely to achieve persistent infection of highly clonal bryozoan hosts through vertical transmission, low virulence and host condition-dependent cycling between covert and overt infections. Exploitation of fish hosts entails massive proliferation and spore production by stages that escape the immune response. Many aspects of the parasite's life cycle remain obscure. If infectious stages are produced in all hosts then the complex life cycle includes multiple transmission routes.;6. Patterns of disease outbreaks suggest that background, subclinical infections exist under normal environmental conditions. When conditions change, outbreaks may then occur in regions where infection was hitherto unsuspected.;7. Environmental change is likely to cause PKD outbreaks in more northerly regions as warmer temperatures promote disease development, enhance bryozoan biomass and increase spore production, but may also reduce the geographical range of this unique multihost-parasite system. Coevolutionary dynamics resulting from host-parasite interactions that maximise fitness in previous environments may pose problems for sustainability, particularly in view of extensive declines in salmonid populations and degradation of many freshwater habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Cavalier King Charles Spaniels (CKCS) have a high prevalence of inherited macrothrombocytopenia. The purpose of this study was to determine if a mutation in beta1-tubulin correlated with presumptive inherited macrothrombocytopenia. HYPOTHESIS A mutation in beta1-tubulin results in synthesis of an altered beta1-tubulin monomer. alpha-beta tubulin dimers within microtubule protofilaments are unstable, resulting in altered megakaryocyte proplatelet formation. ANIMALS Blood samples were obtained from CKCS and non-CKCS dogs. METHODS DNA was used in polymerase chain reaction (PCR) assays to evaluate beta1-tubulin. Platelet numbers and mean platelet volume (MPV) were evaluated for a correlation with the presence or absence of a mutation identified in beta1-tubulin. Platelets obtained from homozygous, heterozygous, and clear CKCS were further evaluated using electron microscopy and immunofluorescence. RESULTS A mutation in the gene encoding beta1-tubulin correlated with macrothrombocytopenia in CKCS. Electron microscopy and immunofluorescence studies suggest that platelet microtubules are present but most likely are unstable and decreased in number. CONCLUSIONS AND CLINICAL IMPORTANCE The macrothrombocytopenia of CKCS correlated with a mutation in beta1-tubulin. alpha-beta tubulin dimers within protofilaments most likely are unstable, leading to altered proplatelet formation by megakaryocytes. This information will aid in distinguishing inherited from acquired thrombocytopenia. It also provides insight into the mechanism of platelet production by megakaryocytes, and also may prove useful in understanding heart-related changes in macrothrombocytopenic CKCS with concurrent mitral valve regurgitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of IgG on cytokine production by human mononuclear cells (MNC) was studied. Tumor necrosis factor-alpha (TNF) was determined both by bioassay and by immunoassay. Interleukin-1 (IL1) was measured by a thymocyte costimulator assay, which was shown to be completely inhibitable by polyclonal anti-IL1. Precautions were taken to avoid inadvertent exposure of the studied cells to endotoxin. In a first model, TNF and IL1 production by adherent MNC in IgG-coated cluster plates were determined. IgG induced a strong TNF response, usually leveling off after 6 hr, and was comparable in kinetics and magnitude with an LPS-induced response. The thymocyte co-stimulatory activity response was relatively weak and peaked at 6 hr. In contrast, LPS-induced co-stimulatory activity production steadily increased over 24 hr. In a second model, MNC in suspension cultures containing autologous serum were exposed to IgG for intravenous use (IgG-IV). Cells exposed to IgG-IV produced higher amounts of cytokines than control counterparts and were primed for enhanced production of cytokines upon a second, unrelated stimulus. This implies that the effect of IgG-IV on suspended MNC resembles that of surface-adsorbed IgG and raises the possibility that cytokine release is an integral part of the mechanism of action of infused IgG. Evidence is presented suggesting that both surface IgG and IgG-IV act directly on monocytes, in a Fc-dependent manner.