4 resultados para Sort (Catalunya)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of this study involving 170 patients suffering from non-specific low back pain was to test the validity of the spinal function sort (SFS) in a European rehabilitation setting. The SFS, a picture-based questionnaire, assesses perceived functional ability of work tasks involving the spine. All measurements were taken by a blinded research assistant; work status was assessed with questionnaires. Our study demonstrated a high internal consistency shown by a Cronbach's alpha of 0.98, reasonable evidence for unidimensionality, spearman correlations of >0.6 with work activities, and discriminating power for work status at 3 and 12 months by ROC curve analysis (area under curve = 0.760 (95% CI 0.689-0.822), respectively, 0.801 (95% CI 0.731-0.859). The standardised response mean within the two treatment groups was 0.18 and -0.31. As a result, we conclude that the perceived functional ability for work tasks can be validly assessed with the SFS in a European rehabilitation setting in patients with non-specific low back pain, and is predictive for future work status.
Resumo:
OBJECTIVE: To identify markers associated with the chondrogenic capacity of expanded human articular chondrocytes and to use these markers for sorting of more highly chondrogenic subpopulations. METHODS: The chondrogenic capacity of chondrocyte populations derived from different donors (n = 21) or different clonal strains from the same cartilage biopsy specimen (n = 21) was defined based on the glycosaminoglycan (GAG) content of tissues generated using a pellet culture model. Selected cell populations were analyzed by microarray and flow cytometry. In some experiments, cells were sorted using antibodies against molecules found to be associated with differential chondrogenic capacity and again assessed in pellet cultures. RESULTS: Significance Analysis of Microarrays indicated that chondrocytes with low chondrogenic capacity expressed higher levels of insulin-like growth factor 1 and of catabolic genes (e.g., matrix metalloproteinase 2, aggrecanase 2), while chondrocytes with high chondrogenic capacity expressed higher levels of genes involved in cell-cell or cell-matrix interactions (e.g., CD49c, CD49f). Flow cytometry analysis showed that CD44, CD151, and CD49c were expressed at significantly higher levels in chondrocytes with higher chondrogenic capacity. Flow cytometry analysis of clonal chondrocyte strains indicated that CD44 and CD151 could also identify more chondrogenic clones. Chondrocytes sorted for brighter CD49c or CD44 signal expression produced tissues with higher levels of GAG per DNA (up to 1.4-fold) and type II collagen messenger RNA (up to 3.4-fold) than did unsorted cells. CONCLUSION: We identified markers that allow characterization of the capacity of monolayer-expanded chondrocytes to form in vitro cartilaginous tissue and enable enrichment for subpopulations with higher chondrogenic capacity. These markers might be used as a means to predict and possibly improve the outcome of cell-based cartilage repair techniques.