24 resultados para Sorbent pore clogging
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.
Resumo:
Dialysate regeneration by sorbents is an alternative to conventional single-pass dialysis. Little is known about the capacity of sorbents to clear dialysate of “middle molecules” and protein-bound uremic toxins. We studied p-cresol sulfate (PCS) and β-2-microglobulin (β2M) removal from dialysate by a sorbent: 1. PCS (40 mg PCS dissolved in 4 L of fresh dialysate) was recirculated through a sorbent cartridge (SORB Technology, Inc.) for analysis of PCS removal. 2. Spent peritoneal dialysate was recirculated on the “blood” side of a high-flux dialyzer. On the “dialysate” side of the membrane, bicarbonate dialysate was recirculated through a sorbent cartridge. β2M was measured in both streams. Two results are of particular importance for the use of regenerated fluid in chronic dialysis: 1. PCS was virtually completely removed from the dialysate. On average, PCS concentration was reduced to 1.4% of the starting concentration after 60 minutes. PCS extraction across the sorbent was nearly complete at any time. 2. β2M was on average reduced to 14.3% of the starting concentration after 60 minutes. Postsorbent concentrations were consistently below the validated range of the test method. We conclude that PCS and β2M are efficiently removed from the dialysate by commercially available sorbent technology. Spent peritoneal dialysis fluid can be cleared of β2M when circulated against sorbent-regenerated dialysate using a high-flux membrane.
Resumo:
The repair of bone defects with biomaterials depends on a sufficient vascularization of the implantation site. We analyzed the effect of pore size on the vascularization and osseointegration of biphasic calcium phosphate particles, which were implanted into critical-sized cranial defects in Balb/c mice. Dense particles and particles with pore sizes in the ranges 40-70, 70-140, 140-210, and 210-280 mum were tested (n = 6 animals per group). Angiogenesis, vascularization, and leukocyte-endothelium interactions were monitored for 28 days by intravital microscopy. The formation of new bone and the bone-interface contact (BIC) were determined histomorphometrically. Twenty-eight days after implantation, the functional capillary density was significantly higher with ceramic particles whose pore sizes exceeded 140 mum [140-210 mum: 6.6 (+/-0.8) mm/mm(2); 210-280 mum: 7.3 (+/-0.6) mm/mm(2)] than with those whose pore sizes were lesser than 140 mum [40-70 mum: 5.3 (+/-0.4) mm/mm(2); 70-140 mum: 5.6 (+/-0.3) mm/mm(2)] or with dense particles [5.7 (+/-0.8) mm/mm(2)]. The volume of newly-formed bone deposited within the implants increased as the pore size increased [40-70 mum: 0.07 (+/-0.02) mm(3); 70-140 mum: 0.10 (+/-0.06) mm(3); 140-210 mum: 0.13 (+/-0.05) mm(3); 210-280 mum: 0.15 (+/-0.06) mm(3)]. Similar results were observed for the BIC. The data demonstrates pore size to be a critical parameter governing the dynamic processes of vascularization and osseointegration of bone substitutes. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007.
Resumo:
Three archived core samples from boreholes DGR-4, DGR-5 and DGR-6 from the Salina F Unit, Queenston Formation and the Georgian Bay Formation were subjected to squeezing tests at pressures of up to 500 MPa. Two samples did not yield any water, while a total of 0.88 g pore water was obtained from a clay-rich sample from the Blue Mountain Formation (water content = 2.8 wt.%, porosity = 8 %). This water mass was sufficient for a full chemical and water-isotope analysis – the first direct determination of pore-water composition in rocks from the DGR boreholes. The results are generally in reasonable agreement with those of independent methods, or the observed differences can be explained. Ancillary investigations included the determination of water content, densities and mineralogy, aqueous extraction of squeezed cores, and SEM investigations to characterise the microtexture of unsqueezed and squeezed rock materials. It is concluded that squeezing is a promising method of pore-water extraction and characterisation and is recommended as an alternative method for future studies. Selection criteria for potentially squeezable samples include high clay-mineral content (correlating in a high water content) and low carbonate content (low stiffness, limited cementation). Potential artefacts of the method, such as ion filtration or pressure solution, should be explored and quantified in future efforts.
Resumo:
Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.
Resumo:
Reactive and noble gases dissolved in matrix pore water of low permeable crystalline bedrock were successfully extracted and characterized for the fist time based on drillcore samples from the Olkiluoto investigation site (SW Finland). Interaction between matrix pore water and fracture groundwater occurs predominately by diffusion. Changes in the chemical and isotopic composition of gases dissolved in fracture groundwater are transmitted and preserved in the pore water. Absolute concentrations, their ratios and the stable carbon isotope signature of hydrocarbon gases dissolved in pore water give valuable indications about the evolution of these gases in the nearby-flowing fracture groundwaters. Inert noble gases dissolved in matrix pore water and their isotopes combined with their in-situ production and accumulation rates deliver information about the residence time of pore water.