36 resultados para Soluble lignins
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases. METHODS: sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. In vitro studies were performed to investigate which factors regulate sCD14 release and mCD14 expression. RESULTS: sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. In vitro, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition. CONCLUSIONS: This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.
Resumo:
Posttraumatic stress disorder (PTSD) and circulating cellular adhesion molecules (CAMs) predict cardiovascular risk. We hypothesized a positive relationship between PTSD caused by myocardial infarction (MI) and soluble CAMs. We enrolled 22 post-MI patients with interviewer-rated PTSD and 22 post-MI patients with no PTSD. At 32±6months after index MI, all patients were re-scheduled to undergo the Clinician-Administered PTSD Scale (CAPS) interview and had blood collected to assess soluble CAMs at rest and after the CAPS interview. Relative to patients with no PTSD, those with PTSD had significantly higher levels of soluble vascular cellular adhesion molecule (sVCAM)-1 and intercellular adhesion molecule (sICAM)-1 at rest and, controlling for resting CAM levels, significantly higher sVCAM-1 and sICAM-1 after the interview. Greater severity of PTSD predicted significantly higher resting levels of sVCAM-1 and soluble P-selectin in patients with PTSD. At follow-up, patients with persistent PTSD (n=15) and those who had remitted (n=7) did not significantly differ in CAM levels at rest and after the interview; however, both these groups had significantly higher sVCAM-1 and sICAM-1 at rest and also after the interview compared to patients with no PTSD. Elevated levels of circulating CAMs might help explain the psychophysiologic link of PTSD with cardiovascular risk.
Resumo:
BACKGROUND.: Urine is a potentially rich source of biomarkers for monitoring kidney dysfunction. In this study, we have investigated the potential of soluble human leukocyte antigen (sHLA)-DR in the urine for noninvasive monitoring of renal transplant patients. METHODS.: Urinary soluble HLA-DR levels were measured by sandwich enzyme-linked immunosorbent assay in 103 patients with renal diseases or after renal transplantation. sHLA-DR in urine was characterized by Western blotting and mass spectrometry. RESULTS.: Acute graft rejection was associated with a significantly elevated level of urinary sHLA-DR (P<0.0001), compared with recipients with stable graft function or healthy individuals. A receiver operating characteristic curve analysis showed the area under the curve to be 0.88 (P<0.001). At a selected threshold, the sensitivity was 80% and specificity was 98% for detection of acute renal transplant rejection. sHLA-DR was not exosomally associated and was of lower molecular weight compared with the HLA-DR expressed as heterodimer on the plasma membrane of antigen-presenting cells. CONCLUSIONS.: sHLA-DR excreted into urine is a promising indicator of renal transplant rejection.
Resumo:
The level of body iron storage and the erythropoietic need for iron are indicated by the serum levels of ferritin and soluble transferrin receptor (sTfR), respectively. A meta-analysis of five genome-wide association studies on sTfR and ferritin revealed novel association to the PCSK7 and TMPRSS6 loci for sTfR and the HFE locus for both parameters. The PCSK7 association was the most significant (rs236918, P = 1.1 × 10E-27) suggesting that proprotein convertase 7, the gene product of PCSK7, may be involved in sTfR generation and/or iron homeostasis. Conditioning the sTfR analyses on transferrin saturation abolished the HFE signal and substantially diminished the TMPRSS6 signal while the PCSK7 association was unaffected, suggesting that the former may be mediated by transferrin saturation whereas the PCSK7-associated effect on sTfR generation appears to be more direct.
Resumo:
Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163.
Resumo:
We studied the psychophysiology of soluble intercellular adhesion molecule-1 (sICAM-1) in 25 apparently healthy middle-aged men who underwent an acute psychosocial stressor three times with one week apart. Measures of the biological stress response were obtained at week one and three. The magnitude of the sICAM-1 stress response showed no habituation between visits. At week one, cognitive stress appraisal independently predicted integrated sICAM-1 area under the curve (AUC) between rest, immediately post-stress, and 45 min and 105 min post-stress (beta=.67, p=.012, deltaR(2)=.41). Diastolic blood pressure AUC (beta=-.45, p=.048, deltaR(2)=.21) and heart rate (AUC) (beta=.44, p=.055, deltaR(2)=.21) were independent predictors of sICAM-1 (AUC) at week three. Adjustment for hemoconcentration yielded a decrease in sICAM-1 levels from rest to post-stress (p<.001). Stress responsiveness of plasma sICAM-1 was predicted by stress perception and hemodynamic reactivity and affected by stress-hemoconcentration but unrelated to cortisol reactivity and not readily adapting to stress repeats.
Resumo:
The interaction of bovine cells with lipopolysaccharide (LPS) was explored using human embryo kidney (HEK) 293 cell line stably transduced with bovine toll-like receptor-4 (TLR4) alone or in combination with bovine MD-2. These lines and mock-transduced HEK293 cells were tested by flow cytometry for LPS-fluorescein isothiocyanate (LPS-FITC) binding, nuclear factor kappa B (NFkappaB) activation, interleukin-8 (IL-8) production and interferon-beta mRNA expression/interferon (IFN) type I production. Whereas bovine TLR4 was sufficient to promote binding of high concentrations of LPS-FITC, both bovine TLR4 and MD-2 were required for activation by LPS, as assessed by NFkappaB activation and IL-8 production. Induction of IFN bioactivity was not observed in doubly transduced HEK293 cells, and no evidence for IFN-beta mRNA induction in response to LPS was obtained, although cells responded by IFN-beta mRNA expression to stimulation by Sendai virus and poly-inosinic acid-poly-cytidylic acid (poly(I:C)). Cells stably transduced with both bovine TLR4 and bovine MD-2 responded to LPS by IL-8 production, in decreasing order, in the presence of fetal bovine serum (FCS), of human serum, and of human serum albumin (HSA). The reduced activity in the presence of HSA could be restored by the addition of soluble CD14 (sCD14) but not of LPS binding protein (LBP). This is in contrast to macrophages which show a superior response to LPS in the presence of HSA when compared with macrophages stimulated by LPS in the presence of FCS. This suggests that macrophages but not HEK293 cells express factors rendering LPS stimulation serum-independent. Stably double-transduced cells reacted, in decreasing order, to LPS from Rhodobacter sphaeroides, to LPS from Escherichia coli, to synthetic lipd-IVa (compound 406), to diphosphoryl-lipid-A (S. minnesota) and to monophosphoryl-lipid-A (S. minnesota). They failed to react to the murine MD-2/TLR4 ligand taxol. This resembles the reactivity of bovine macrophages with regard to sensitivity (ED(50)) and order of potency but is distinct from the reactivity pattern of other species. This formally establishes that in order to react to LPS, cattle cells require serum factors (e.g. sCD14) and cell-expressed factors such as MD-2 and TLR4. The cell lines described are the first of a series expressing defined pattern recognition receptors (PRR) of bovine origin. They will be useful in the study of the interaction of the bovine TLR4-MD-2 complex and Gram-negative bovine pathogens, e.g. the agents causing Gram-negative bovine mastitis.
Resumo:
Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.
Resumo:
Here we describe a collection of methods that have been adapted to produce highly efficient nuclear and cytoplasmic extracts from adenovirus-infected HeLa cells. We describe how to produce extracts from virus-infected cells and how to analyze RNA splicing in vitro using T7 RNA polymerase-derived splicing substrate RNAs.
Resumo:
OBJECTIVE: We analysed the production of soluble tumour necrosis factor receptors sTNFR1 and sTNFR2 at sites of inflammation and measured their plasma concentrations to evaluate them as biological markers of disease activity. METHODS: Plasma samples of 35 patients with Behçet's disease (BD) were collected prospectively at monthly intervals and grouped for inactive disease, active BD without arthritis, and active BD with arthritis. sTNFR1 and sTNFR2 concentrations were measured using immunoassays and compared with other biological disease activity parameters. Plasma sTNFR levels were compared to synovial fluid (SF) levels in seven patients. Sixteen tissue samples of mucocutaneous lesions were stained for TNFR2 expression by immunohistochemistry. RESULTS: sTNFR1 and sTNFR2 were found at increased plasma concentrations in active BD, with the highest concentration in active BD with arthritis (p<0.001). Concentrations of both sTNFRs were at least three times higher in SF of arthritic joints than in the corresponding plasma samples (p = 0.025). A change of more than 1 ng/mL of sTNFR2 plasma concentrations correlated with a concordant change in arthritic activity (96% confidence interval). Sensitivity to change was superior to that of sTNFR1, and other biological disease activity parameters such as erythrocyte sedimentation rate (ESR), immunoglobulin (Ig)G, IgA, and interleukin (IL)-10 plasma concentrations. A strong staining for TNFR2 was found in mucocutaneous lesions, where mast cells were identified as the major source for this receptor. CONCLUSIONS: This longitudinal study demonstrates that sTNFR2 plasma concentrations are closely linked with active BD, and especially with arthritis. Taken together with the expression of TNFR molecules in mast cells of mucocutaneous lesions, our results indicate a fundamental role for the TNF/TNFR pathway in BD.