2 resultados para Solidification.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The objective of modern transmission electron microscopy (TEM) in life science is to observe biological structures in a state as close as possible to the living organism. TEM samples have to be thin and to be examined in vacuum; therefore only solid samples can be investigated. The most common and popular way to prepare samples for TEM is to subject them to chemical fixation, staining, dehydration, and embedding in a resin (all of these steps introduce considerable artifacts) before investigation. An alternative is to immobilize samples by cooling. High pressure freezing is so far the only approach to vitrify (water solidification without ice crystal formation) bulk biological samples of about 200 micrometer thick. This method leads to an improved ultrastructural preservation. After high pressure freezing, samples have to be subjected to follow-up procedure, such as freeze-substitution and embedding. The samples can also be sectioned into frozen hydrated sections and analyzed in a cryo-TEM. Also for immunocytochemistry, high pressure freezing is a good and practicable way.
Resumo:
Geochemical investigation of Martian meteorites (SNC meteorites) yields important constraints on the chemical and geodynamical evolution of Mars. These samples may not be representative of the whole of Mars; however, they provide constraints on the early differentiation processes on Mars. The bulk composition of Martian samples implies the presence of a metallic core that formed concurrently as the planet accreted. The strong depletion of highly siderophile elements in the Martian mantle is only possible if Mars had a large scale magma ocean early in its history allowing efficient separation of a metallic melt from molten silicate. The solidification of the magma ocean created chemical heterogeneities whose ancient origin is manifested in the heterogeneous 142Nd and 182W abundances observed in different meteorite groups derived from Mars. The isotope anomalies measured in SNC meteorites imply major chemical fractionation within the Martian mantle during the life time of the short-lived isotopes 146Sm and 182Hf. The Hf-W data are consistent with very rapid accretion of Mars within a few million years or, alternatively, a more protracted accretion history involving several large impacts and incomplete metal-silicate equilibration during core formation. In contrast to Earth early-formed chemical heterogeneities are still preserved on Mars, albeit slightly modified by mixing processes. The preservation of such ancient chemical differences is only possible if Mars did not undergo efficient whole mantle convection or vigorous plate tectonic style processes after the first few tens of millions of years of its history.