2 resultados para Solid particle erosion

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to particle size and surface chemistry, the shape of particles plays an important role in their wetting and displacement by the surfactant film in the lung. The role of particle shape was the subject of our investigations using a model system consisting of a modified Langmuir-Wilhelmy surface balance. We measured the influence of sharp edges (lines) and other highly curved surfaces, including sharp corners or spikes, of different particles on the spreading of a dipalmitoylphosphatidyl (DPPC) film. The edges of cylindrical sapphire plates (circular curved edges, 1.65 mm radius) were wetted at a surface tension of 10.7 mJ/m2 (standard error (SE) = 0.45, n = 20) compared with that of 13.8 mJ/m2 (SE = 0.20, n = 20) for cubic sapphire plates (straight linear edges, edge length 3 mm) (p < 0.05). The top surfaces of the sapphire plates (cubic and cylindrical) were wetted at 8.4 mJ/m2 (SE = 0.54, n = 20) and 9.1 mJ/m2 (SE = 0.50, n = 20), respectively, but the difference was not significant (p > 0.05). The surfaces of the plates showed significantly higher resistance to spreading compared to that of the edges, as substantially lower surface tensions were required to initiate wetting (p < 0.05). Similar results were found for talc particles, were the edges of macro- and microcrystalline particles were wetted at 7.2 mJ/m2 (SE = 0.52, n = 20) and 8.2 mJ/m2 (SE = 0.30, n = 20) (p > 0.05), respectively, whereas the surfaces were wetted at 3.8 mJ/m2 (SE = 0.89, n = 20) and 5.8 mJ/m2 (SE = 0.52, n = 20) (p < 0.05), respectively. Further experiments with pollen of malvaceae and maize (spiky and fine knobbly surfaces) were wetted at 10.0 mJ/m2 (SE = 0.52, n = 10) and 22.75 mJ/m2 (SE = 0.81, n = 10), respectively (p < 0.05). These results show that resistance to spreading of a DPPC film on various surfaces is dependent on the extent these surfaces are curved. This is seen with cubic sapphire plates which have at their corners a radius of curvature of about 0.75 microm, spiky malvaceae pollen with an even smaller radius on top of their spikes, or talc with various highly curved surfaces. These highly curved surfaces resisted wetting by the DPPC film to a higher degree than more moderately curved surfaces such as those of cylindrical sapphire plates, maize pollens, or polystyrene spheres, which have a surface free energy similar to that of talc but a smooth surface. The macroscopic plane surfaces of the particles demonstrated the greatest resistance to spreading. This was explained by the extremely fine grooves in the nanometer range, as revealed by electron microscopy. In summary, to understand the effects of airborne particles retained on the surfaces of the respiratory tract, and ultimately their pathological potential, not only the particle size and surface chemistry but also the particle shape should be taken in consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.