14 resultados para Solid oxide fuel cells
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We study the oxygen reduction reaction (ORR), the catalytic process occurring at the cathode in fuel cells, on Pt layers prepared by electrodeposition onto an Au substrate. Using a nominal Pt layer by layer deposition method previously proposed, imperfect layers of Pt on Au are obtained. The ORR on deposited Pt layers decreases with increasing Pt thickness. In the submonolayer region, however, the ORR activity is superior to that of bulk Pt. Using density functional theory (DFT) calculations, we correlate the observed activity trend to strain, ligand, and ensemble effects. At submonolayer coverage certain atom configurations weaken the binding energies of reaction intermediates due to a ligand and ensemble effect, thus effectively increasing the ORR activity. At higher Pt coverage the activity is governed by a strain effect, which lowers the activity by decreasing the oxidation potential of water. This study is a nice example of how the influence of strain, ligand, and ensemble effects on the ORR can be deconvoluted.
Resumo:
Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization.
Resumo:
Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.
Resumo:
Glomerular mesangial cells can produce high amounts of nitric oxide (NO) and reactive oxygen species (ROS). Here we analyzed the impact of NO on the ROS-generating system, particularly on the NADPH oxidase Nox1. Nox1 mRNA and protein levels were markedly decreased by treatment of mesangial cells with the NO-releasing compound DETA-NO in a concentration- and time-dependent fashion. By altering the cGMP signaling system with different inhibitors or activators, we revealed that the effect of NO on Nox1 expression is at least in part mediated by cGMP. Analysis of a reporter construct comprising the 2547 bp of the nox1 promoter region revealed that a stimulatory effect of IL-1beta on nox1 transcription is counteracted by an inhibitory effect of IL-1beta-evoked endogenous NO formation. Moreover, pretreatment of mesangial cells with DETA-NO attenuated platelet-derived growth factor (PDGF)-BB or serum stimulated production of superoxide as assessed by real-time EPR spectroscopy and dichlorofluorescein formation. Transfection of mesangial cells with siRNAs directed against Nox1 and Nox4 revealed that inhibition of Nox1, but not Nox4 expression, is responsible for the reduced ROS formation by NO. Obviously, there exists a fine-tuned crosstalk between NO and ROS generating systems in the course of inflammatory diseases.
Resumo:
Dendritic cells (DC) are important cells at the interface between innate and adaptive immunity. DC have a key role in antigen processing and presentation to T cells. Effector functions of DC related to innate immunity have not been explored extensively. We show that bovine monocyte-derived DC (mDC) express inducible nitric oxide synthase (iNOS) mRNA and protein and produce NO upon triggering with interferon-gamma (IFN-gamma) and heat-killed Listeria monocytogenes (HKLM). An immunocytochemical analysis revealed that a sizeable subset (20-60%) copiously expresses iNOS (iNOShi) upon IFN-gamma/HKLM triggering, whereas the other subset expressed low levels of iNOS (iNOSlo). Monocyte-derived macrophages (mMphi) are more homogeneous with regard to iNOS expression. The number of cells within the iNOSlo mDC subset is considerably larger than the number of dead cells or cells unresponsive to IFN-gamma/HKLM. The large majority of cells translocated p65 to the nucleus upon triggering by IFN-gamma/HKLM. A contamination of mDC with iNOS-expressing mMphi was excluded as follows. (i) Cell surface marker analysis suggested that mDC were relatively homogeneous, and no evidence for a contaminating subset expressing macrophage markers (e.g. high levels of CD14) was obtained. (ii) iNOS expression was stronger in iNOShi mDC than in mMphi. The use of maturation-promoting stimuli revealed only subtle phenotypic differences between immature and mature DC in cattle. Nevertheless, these stimuli promoted development of considerably fewer iNOShi mDC upon triggering with IFN-gamma/HKLM. Immunocytochemical results showed that although a significant proportion of cells expressed iNOS only or TNF only upon triggering with IFN-gamma/HKLM, a significant number of cells expressed both iNOS and TNF, suggesting that TNF and iNOS producing (TIP) DC are present within bovine mDC populations obtained in vitro.
Resumo:
Pretreatment with deuterium oxide (D2O) has been shown to protect mice against lethal effects of X-rays. In contrast, X-irradiation of cultured mammalian cells in D2O-containing medium has previously been reported to result in increased cell killing. Therefore, the effects of preincubation in medium containing 20% D2O on radiosensitivity were tested, using cells of a heat-sensitive cell-cycle mutant (21-Tb) of the murine mastocytoma P 815-X2. The mutant cells proliferate at 33 degrees C and are arrested in G1 phase in a state of reversible proliferative quiescence at 39.5 degrees C. Prior to irradiation with single X-ray doses of 0-10 Gy, the cells were cultured in normal or D2O-containing medium, either for 96 h at 33 degrees C ('proliferating cells'), or for 72 h at 33 degrees C followed by 24 h at 39.5 degrees C ('arrested cells'). After X-irradiation the cells were resuspended in normal medium, and cell survival was determined by the capacity of cells to form colonies in fibrin gels. Preincubation in medium containing 20% D2O resulted in a radioprotective effect on both proliferating and arrested cells, particularly at the higher X-ray doses. This radioprotection was manifested as a decreased slope of the semilogarithmic survival curves, whereas pretreatment with D2O had no significant effect on postirradiation repair as judged from Dq values. These results support the interpretation that the increase in postirradiation survival may be attributed to incorporation of deuterium into cellular metabolites during the period of preincubation.
Resumo:
Nitric oxide mediates a wide array of cellular functions in many tissues. It is generated by three known isoforms of nitric oxide synthases (NOS). Recently, the endothelial isoform, NOSIII, was shown to be abundantly expressed in the rat thyroid gland and its expression increased in goitrous glands. In this study, we analyzed whether NOSIII is expressed in human thyroid tissue and whether levels of expression vary in different states of thyroid gland function. Semiquantitative RT-PCR was used to assess variations in NOSIII gene expression in seven patients with Graves' disease, one with a TSH-receptor germline mutation and six hypothyroid patients (Hashimoto's thyroiditis). Protein expression and subcellular localization were determined by immunohistochemistry (two normal thyroids, five multinodular goiters, ten hyperthyroid patients and two hypothyroid patients). NOSIII mRNA was detected in all samples: the levels were significantly higher in tissues from hyperthyroid patients compared with euthyroid and hypothyroid patients. NOSIII immunoreactivity was detected in vascular endothelial cells, but was also found in thyroid follicular cells. In patients with Graves' disease, the immunostaining was diffusely enhanced in all follicular cells. A more intense signal was observed in toxic adenomas and in samples obtained from a patient with severe hyperthyroidism due to an activating mutation in the TSH receptor. In multinodular goiters, large follicles displayed a weak signal whereas small proliferative follicles showed intense immunoreactivity near the apical plasma membrane. In hypothyroid patients, NOSIII immunoreactivity was barely detectable. In summary, NOSIII is expressed both in endothelial cells and thyroid follicular cells. The endothelial localization of NOSIII is consistent with a role for nitric oxide in the vascular control of the thyroid. NOSIII expression in thyroid follicular cells and the variations in its immunoreactivity suggest a possible role for nitric oxide in thyrocyte function and/or growth.
Resumo:
BACKGROUND: There is increasing evidence suggesting that development of progressive canine cranial cruciate ligament (CCL) rupture involves a gradual degeneration of the CCL itself, initiated by a combination of factors, ranging from mechanical to biochemical. To date, knowledge is lacking to what extent cruciate disease results from abnormal biomechanics on a normal ligament or contrary how far preliminary alterations of the ligament due to biochemical factors provoke abnormal biomechanics. This study is focused on nitric oxide (NO), one of the potential biochemical factors. The NO-donor sodium nitroprusside (SNP) has been used to study NO-dependent cell death in canine cranial and caudal cruciate ligament cells and to characterize signaling mechanisms during NO-stimulation. RESULTS: Sodium nitroprusside increased apoptotic cell death dose- and time-dependently in cruciate ligamentocytes. Cells from the CCL were more susceptible to apoptosis than CaCL cells. Caspase-3 processing in response to SNP was not detected. Testing major upstream and signal transducing pathways, NO-induced cruciate ligament cell death seemed to be mediated on different levels. Specific inhibition of tyrosine kinase significantly decreased SNP-induced cell death. Mitogen activated protein kinase ERK1 and 2 are activated upon NO and provide anti-apoptotic signals whereas p38 kinase and protein kinase C are not involved. Moreover, data showed that the inhibition reactive oxygen species (ROS) significantly reduced the level of cruciate ligament cell death. CONCLUSIONS: Our data support the hypothesis that canine cruciate ligamentocytes, independently from their origin (CCL or CaCL) follow crucial signaling pathways involved in NO-induced cell death. However, the difference on susceptibility upon NO-mediated apoptosis seems to be dependent on other pathways than on these tested in the present study. In both, CCL and CaCL, the activation of the tyrosine kinase and the generation of ROS reveal important signaling pathways. In perspective, new efforts to prevent the development and progression of cruciate disease may include strategies aimed at reducing ROS.
Resumo:
INTRODUCTION 17β-estradiol (E2) has been found to induce vasodilation in the cardiovascular system and at physiological levels, resulting in prevention of cerebral vasospasm following subarachnoid hemorrhage (SAH) in animal models. The goal of this study was to analyze the cellular mechanism of nitric oxide (NO) production and its relation to E2, in vitro in brain and peripheral endothelial cells. METHODS Human umbilical endothelial cells (HUVEC) and brain endothelial cells (bEnd.3) were treated with estradiol (E2, 0.1, 10, 100, and 1,000 nM), and supernatant was collected at 0, 5, 15, 30, 60, and 120 min for nitric oxide metabolome (nitrite, NO₂) measurements. Cells were also treated with E2 in the presence of 1400W, a potent eNOS inhibitor, and ICI, an antagonist of estradiol receptors (ERs). Effects of E2 on eNOS protein expression were assessed with Western blot analysis. RESULTS E2 significantly increased NO2 levels irrespective of its concentration in both cell lines by 35 % and 42 % (p < 0.05). The addition of an E2 antagonist, ICI (10 μM), prevented the E2-induced increases in NO2 levels (11 % p > 0.05). The combination of E2 (10 nM) and a NOS inhibitor (1400W, 5 μM) inhibited NO2 increases in addition (4 %, p > 0.05). E2 induced increases in eNOS protein levels and phosphorylated eNOS (eNOS(p)). CONCLUSIONS This study indicates that E2 induces NO level increases in cerebral and peripheral endothelial cells in vitro via eNOS activation and through E2 receptor-mediated mechanisms. Further in vivo studies are warranted to evaluate the therapeutic value of estrogen for the treatment of SAH-induced vasospasm.
Resumo:
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.
Resumo:
Previous cancer vaccination trials often aimed to activate CD8(+) cytotoxic T-cell (CTL) responses with short (8-10mer) peptides and targeted CD4(+) helper T cells (TH) with HLA class II-binding longer peptides (12-16 mer) that were derived from tumor antigens. Accordingly, a study of immunomonitoring focused on the detection of CTL responses to the short, and TH responses to the long, peptides. The possible induction of concurrent TH responses to short peptides was widely neglected. In a recent phase I vaccination trial, 53 patients with different solid cancers were vaccinated with EMD640744, a cocktail of five survivin-derived short (9- or 10-mer) peptides in Montanide ISA 51VG. We monitored 49 patients and found strong CD8(+) T-cell responses in 63% of the patients. In addition, we unexpectedly found CD4(+) TH cell responses against at least two of the five short peptides in 61% (23/38) of the patients analyzed. The two peptides were recognized by HLA-DP4- and HLA-DR-restricted TH1 cells. Some short peptide-reactive (sp)CD4 T cells showed high functional avidity. Here, we show that a short peptide vaccine is able to activate a specific CD4(+) T-cell repertoire in many patients, facilitating a strong combined CD4(+)/CD8(+) T-cell response. Cancer Immunol Res; 4(1); 18-25. ©2015 AACR.