18 resultados para Soil surface spatial configuration
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Buttressing is a trait special to tropical trees but explanations for its occurrence remain inconclusive. The two main hypotheses are that they provide structural support and/or promote nutrient acquisition. Studies of the first are common but the second has received much less attention. Architectural measurements were made on adult and juvenile trees of the ectomycorrhizal species Microberlinia bisulcata, in Korup (Cameroon). Buttressing on this species is highly distinctive with strong lateral extension of surface roots of the juveniles leading to a mature buttress system of a shallow spreading form on adults. This contrasts with more vertical buttresses, closer to the stem, found on many other tropical tree species. No clear relationship between main buttress and large branch distribution was found. Whilst this does not argue against the essential structural role of buttresses for these very large tropical trees, the form on M. bisulcata does suggest a likely second role, that of aiding nutrient acquisition. At the Korup site, with its deep sandy soils of very low phosphorus status, and where most nutrient cycling takes place in a thin surface layer of fine roots and mycorrhizas, it appears that buttress form could develop from soil-surface root exploration for nutrients by juvenile trees. It may accordingly allow M. bisulcata to attain the higher greater competitive ability, faster growth rate, and maximum tree size that it does compared with other co-occurring tree species. For sites across the tropics in general, the degree of shallowness and spatial extension of buttresses of the dominant species is hypothesized to increase with decreasing nutrient availability.
Resumo:
The study assessed the brain electric mechanisms of light and deep hypnotic conditions in the framework of EEG temporal microstates. Multichannel EEG of healthy volunteers during initial resting, light hypnosis, deep hypnosis, and eventual recovery was analyzed into temporal EEG microstates of four classes. Microstates are defined by the spatial configuration of their potential distribution maps ([Symbol: see text]potential landscapes') on the head surface. Because different potential landscapes must have been generated by different active neural assemblies, it is reasonable to assume that they also incorporate different brain functions. The observed four microstate classes were very similar to the four standard microstate classes A, B, C, D [Koenig, T. et al. Neuroimage, 2002;16: 41-8] and were labeled correspondingly. We expected a progression of microstate characteristics from initial resting to light to deep hypnosis. But, all three microstate parameters (duration, occurrence/second and %time coverage) yielded values for initial resting and final recovery that were between those of the two hypnotic conditions of light and deep hypnosis. Microstates of the classes B and D showed decreased duration, occurrence/second and %time coverage in deep hypnosis compared to light hypnosis; this was contrary to microstates of classes A and C which showed increased values of all three parameters. Reviewing the available information about microstates in other conditions, the changes from resting to light hypnosis in certain respects are reminiscent of changes to meditation states, and changes to deep hypnosis of those in schizophrenic states.
Resumo:
Purpose Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Methods and Materials Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Results Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. Conclusions The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.
Resumo:
Angiopoietin-2 (Ang-2) antagonises the maturing effect of angiopoietin-1 (Ang-1) on blood vessels, and cooperates with VEGF to induce neovascularisation. In knockout mice, Ang-2 displayed a specific role in postnatal angiogenic remodelling. Here, we demonstrate that mice deficient in Ang-2 fail to form a proper spatial retinal vascular network. The retinal vasculature was characterised by reduced large vessel numbers and defects forming the superficial periphery mostly on the arteriolar site, and the secondary and tertiary deep capillary network. Hypoxia in the retinal periphery induced a four-fold VEGF upregulation and active endothelial proliferation for up to 60 days. Concomitantly, retinal digest preparations showed increased arteriolar (+33%) and capillary diameters (+90%), and fluorescein angiograms revealed leakiness of neovascular front. At one year of age, persistent preretinal vessels were non-leaky in accordance with a relative increase in the ratio of Ang-1 to VEGF. Taken together, the data suggest that Ang-2 has an important function in the spatial configuration of the three-dimensional retinal vasculature. Secondarily, prolonged VEGF activity results in a model of persistent proliferative retinopathy.
Resumo:
Covert brain activity related to task-free, spontaneous (i.e. unrequested), emotional evaluation of human face images was analysed in 27-channel averaged event-related potential (ERP) map series recorded from 18 healthy subjects while observing random sequences of face images without further instructions. After recording, subjects self-rated each face image on a scale from “liked” to “disliked”. These ratings were used to dichotomize the face images into the affective evaluation categories of “liked” and “disliked” for each subject and the subjects into the affective attitudes of “philanthropists” and “misanthropists” (depending on their mean rating across images). Event-related map series were averaged for “liked” and “disliked” face images and for “philanthropists” and “misanthropists”. The spatial configuration (landscape) of the electric field maps was assessed numerically by the electric gravity center, a conservative estimate of the mean location of all intracerebral, active, electric sources. Differences in electric gravity center location indicate activity of different neuronal populations. The electric gravity center locations of all event-related maps were averaged over the entire stimulus-on time (450 ms). The mean electric gravity center for disliked faces was located (significant across subjects) more to the right and somewhat more posterior than for liked faces. Similar differences were found between the mean electric gravity centers of misanthropists (more right and posterior) and philanthropists. Our neurophysiological findings are in line with neuropsychological findings, revealing visual emotional processing to depend on affective evaluation category and affective attitude, and extending the conclusions to a paradigm without directed task.
Resumo:
Given its origins in traditional dialectology, and given advances in our understanding of the social embedding of language variation, it is paradoxical that space should be one of the categories that has received least attention of all in variationist sociolinguistics. Until recently, space has largely been treated as an empty stage on which sociolinguistic processes are enacted. It has been unexamined, untheorized, and its role in shaping and being shaped by variation and change untested. One function of this chapter, therefore, is to assert that space makes a difference, and to begin, in a very hesitant way, to map out what a geographically informed variation analysis might need to address. It also examines variationist interactions with the related concept of mobility. It might be reasonable to think that human geographers would provide some clues on how to proceed. As we will see, they have engaged in a great deal of soul searching about the goals of their discipline, its very existence as a separate field of enquiry, and the directions it should take. Indeed there are remarkable parallels between the recent history of human geographic thought, and interest in language variation across space. Although space has been undertheorized in variation studies, a number of researchers, from the traditional dialectologists through to those interested in the dialectology of mobility and contact, have, of course, been actively engaged in research on geographical variation and language use. Their work will be contextualized here to highlight both the parallels with theory-building in human geography, but also some of the criticisms of earlier approaches which have fed through to human geography, but remain largely unquestioned in variationist practice. The chapter therefore presents a brief theoretical background to space and mobility, before exemplifying these concepts in variationist research through an examination of, for example, the spatial diffusion of linguistic innovations, the spatial configuration of linguistic boundaries and initial steps to examine the consequences of mobility for variationist research.
Resumo:
The main purpose of this study was to evaluate the effect that mechanical stresses acting under the slipping driving wheels of agricultural equipment have on the soil’s pore system and water flow process (surface runoff generation during extreme event). The field experiment simulated low slip (1%) and high slip (27%) on a clay loam. The stress on the soil surface and changes in the amounts of water flowing from macropores were simulated using the Tires/tracks And Soil Compaction (TASC) tool and the MACRO model, respectively. Taking a 65 kW tractor on a clay loam as a reference, results showed that an increase in slip of the rear wheels from 1% to 27% caused normal stress to increase from 90.6 kPa to 104.4 kPa at the topsoil level, and the maximum shear contact stress to rise drastically from 6.0 kPa to 61.6 kPa. At 27% slip, topsoil was sheared and displaced over a distance of 0.35 m. Excessive normal and shear stress values with high slip caused severe reductions of the soil’s macroporosity, saturated hydraulic conductivity, and water quantities flowing from topsoil macropores. Assuming that, under conditions of intense rainfall on sloping land, a loss in vertical water flow would mean an increase in surface runoff, we calculated that a rainfall intensity of 100 mm h-1 and a rainfall duration of 1 h would increase the runoff coefficient to 0.79 at low slip and to 1.00 at high slip, indicating that 100% of rainwater would be transformed into surface runoff at high slip. We expect that these effects have a significant impact on soil erosion and floods in steeper terrain (slope > 15°) and across larger surface areas (> 16 m2) than those included in our study.
Resumo:
This report presents a basic analyis of the data collected on agroclimatology, erosion, and soil and water conservation at Afdeyu Station in the central highlands of Eritrea between 1984 and 2007. Datasets and graphs include rainfall, air and soil surface temperatures, soil loss, surface runoff, river discharge, and land use including cropping patterns of the measured catchment.
Resumo:
The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.
Resumo:
In order to fill existing knowledge gaps in the temporal and spatial distribution of soil erosion, its sources and causes, as well as in relation to its off-site impacts, erosion damage mapping of all visible erosion features was carried out at three study sites in Switzerland. The data illustrate that about one-quarter of the cultivated land was affected by water erosion. Observed mean annual soil loss rates are considered rather low (0.7–2.3 t/ha/y) compared to other European countries. However, substantial losses of >70 t/ha were recorded on individual plots. This paper focuses on the spatial aspects of soil erosion, by observing and comparing the study areas in a 1-year period from October 2005 to October 2006. The analyses illustrate that the sites differ considerably in average soil loss rates, but show similar patterns of off-site effects. In about one-third of the damaged plots an external source of surface runoff upslope contributed to the damage (run-on). Similarly, more than 50 per cent of the soil eroded on arable land deposited downslope on adjacent plots, roads, public/private infrastructure, etc., and 20 per cent of it reached open water bodies. Large amounts of eroded soil which deposit off-site, often related to slope depressions, are considered muddy floods and were frequently observed in Switzerland. Mapping, in conclusion, helps to sheds light on some of the important challenges of today, in particular: to comprehensively assess socioeconomic and ecological off-site effects of soil erosion, to attribute off-site impacts to on-site causes, and to raise awareness of all stakeholders involved, in order to improve ongoing discussions on policy formulation and implementation at the national and international levels.
Resumo:
Efficient planning of soil conservation measures requires, first, to understand the impact of soil erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon (SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of extensive ground truth, a digital elevation model and Landsat 7 imagery from two different seasons. Soil spectral reflectance readings were taken from soil samples in the laboratory and calibrated with results of SOC chemical analysis using regression tree modelling. The resulting model statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accuracy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which was developed to combine soil erosion incidence information and SOC content levels (for uniform land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, from well conserved land to hot spots of soil degradation. The approach helps to gain a better understanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spatially explicit manner. The results show distinctly lower SOC content levels on large parts of the test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On the other hand, there are strong indications that afforestations and fruit orchards established in the 1980s have been successful in conserving soil resources.