6 resultados para Soil reflectance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Efficient planning of soil conservation measures requires, first, to understand the impact of soil erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon (SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of extensive ground truth, a digital elevation model and Landsat 7 imagery from two different seasons. Soil spectral reflectance readings were taken from soil samples in the laboratory and calibrated with results of SOC chemical analysis using regression tree modelling. The resulting model statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accuracy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which was developed to combine soil erosion incidence information and SOC content levels (for uniform land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, from well conserved land to hot spots of soil degradation. The approach helps to gain a better understanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spatially explicit manner. The results show distinctly lower SOC content levels on large parts of the test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On the other hand, there are strong indications that afforestations and fruit orchards established in the 1980s have been successful in conserving soil resources.
Resumo:
Soil degradation is a major problem in the agriculturally dominated country of Tajikistan, which makes it necessary to determine and monitor the state of soils. For this purpose a soil spectral library was established as it enables the determination of soil properties with relatively low costs and effort. A total of 1465 soil samples were collected from three 10x10 km test sites in western Tajikistan. The diffuse reflectance of the samples was measured with a FieldSpec PRO FR from ASD in the spectral range from 380 to 2500 nm in laboratory. 166 samples were finally selected based on their spectral information and analysed on total C and N, organic C, pH, CaCO₃, extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. Multiple linear regression was used to set up the models. Two third of the chemically analysed samples were used to calibrate the models, one third was used for hold-out validation. Very good prediction accuracy was obtained for total C (R² = 0.76, RMSEP = 4.36 g kg⁻¹), total N (R² = 0.83, RMSEP = 0.30 g kg⁻¹) and organic C (R² = 0.81, RMSEP = 3.30 g kg⁻¹), good accuracy for pH (R² = 0.61, RMSEP = 0.157) and CaCO3(R² = 0.72, RMSEP = 4.63 %). No models could be developed for extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. It can be concluded that the spectral library approach has a high potential to substitute standard laboratory methods where rapid and inexpensive analysis is required.
Resumo:
Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used.The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9),Maybar (84. 0.57, 2.5),Megech (85, 0.15, 2.6), andWondoGenet (86, 0.52, 2.7) indicating that themodels were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.
Resumo:
Over the last ~20 years, soil spectral libraries storing near-infrared reflectance (NIR) spectra from diverse soil samples have been built for many places, since almost 10 years also for Tajikistan. Many calibration approaches have been reported and used for prediction from large and heterogeneous libraries, but most are hampered by the high diversity of the soils, where the mineral background is heavily influencing spectral features. In such cases, local learning strategies have the advantage of building locally adapted calibrations, which can deal better with nonlinearities. Therefore, it was our major aim to identify the most efficient approach to develop an accurate and stable locally weigthed calibration model using a spectral library compiled over the past years. Keywords: Tajikistan, Near-Infrared spectroscopy (NIRS), soil organic carbon, locally weighted regression, regional and local spectral library.
Resumo:
Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC was predicted using regression models for samples taken from three sites (Gununo, Maybar and Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that the first two components accounted for a minimum of 96% variation which increased for individual sites and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A robust model, Anjeni, is recommended for prediction of SOC in Ethiopia.