15 resultados para Software defined radio
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
This study deals with indoor positioning using GSM radio, which has the distinct advantage of wide coverage over other wireless technologies. In particular, we focus on passive localization systems that are able to achieve high localization accuracy without any prior knowledge of the indoor environment or the tracking device radio settings. In order to overcome these challenges, newly proposed localization algorithms based on the exploitation of the received signal strength (RSS) are proposed. We explore the effects of non-line-of-sight communication links, opening and closing of doors, and human mobility on RSS measurements and localization accuracy. We have implemented the proposed algorithms on top of software defined radio systems and carried out detailed empirical indoor experiments. The performance results show that the proposed solutions are accurate with average localization errors between 2.4 and 3.2 meters.
Resumo:
Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.
Resumo:
Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Our method to evaluate the synchronization accuracy is inspired by signal processing algorithms and relies on fine grain time information. The method is able to calculate the clock offset and skew between devices with nanosecond accuracy in real time. It was implemented using software defined radio technology. We demonstrate that GPS-based synchronization suffers from remaining clock offset in the range of a few hundred of nanoseconds but the clock skew is negligible. Finally, we determine a corresponding lower bound on the expected positioning error.
Resumo:
In this work, we provide a passive location monitoring system for IEEE 802.15.4 signal emitters. The system adopts software defined radio techniques to passively overhear IEEE 802.15.4 packets and to extract power information from baseband signals. In our system, we provide a new model based on the nonlinear regression for ranging. After obtaining distance information, a Weighted Centroid (WC) algorithm is adopted to locate users. In WC, each weight is inversely proportional to the nth power of propagation distance, and the degree n is obtained from some initial measurements. We evaluate our system in a 16m-18m area with complex indoor propagation conditions. We are able to achieve a median error of 2:1m with only 4 anchor nodes.
Resumo:
Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.
Resumo:
Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.
Resumo:
This paper discusses several issues of Service-Centric Networking (SCN) as an extension of the Information-Centric Networking (ICN) paradigm. SCN allows extended caching, where not exactly the same content as requested can be read from caches, but similar content can be used to produce the content requested, e.g., by filtering or transcoding. We discuss the issue of naming and routing for general dynamic services for both tightly coupled and decoupled ICN approaches. Challenges and solutions for service management are identified, in particular for composed services, which allow distributed in-network processing of service requests. We introduce the term Software-Defined Service-Centric Networking as an extension of Software-Defined Networking. A prototype implementation for SCN proofs its validity and feasibility and underlines its potential benefits.
Resumo:
The increasing interest in autonomous coordinated driving and in proactive safety services, exploiting the wealth of sensing and computing resources which are gradually permeating the urban and vehicular environments, is making provisioning of high levels of QoS in vehicular networks an urgent issue. At the same time, the spreading model of a smart car, with a wealth of infotainment applications, calls for architectures for vehicular communications capable of supporting traffic with a diverse set of performance requirements. So far efforts focused on enabling a single specific QoS level. But the issues of how to support traffic with tight QoS requirements (no packet loss, and delays inferior to 1ms), and of designing a system capable at the same time of efficiently sustaining such traffic together with traffic from infotainment applications, are still open. In this paper we present the approach taken by the CONTACT project to tackle these issues. The goal of the project is to investigate how a VANET architecture, which integrates content-centric networking, software-defined networking, and context aware floating content schemes, can properly support the very diverse set of applications and services currently envisioned for the vehicular environment.
Resumo:
Purpose Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Methods and Materials Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Results Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. Conclusions The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.
Resumo:
This paper examines the accuracy of software-based on-line energy estimation techniques. It evaluates today’s most widespread energy estimation model in order to investigate whether the current methodology of pure software-based energy estimation running on a sensor node itself can indeed reliably and accurately determine its energy consumption - independent of the particular node instance, the traffic load the node is exposed to, or the MAC protocol the node is running. The paper enhances today’s widely used energy estimation model by integrating radio transceiver switches into the model, and proposes a methodology to find the optimal estimation model parameters. It proves by statistical validation with experimental data that the proposed model enhancement and parameter calibration methodology significantly increases the estimation accuracy.
Resumo:
This paper addresses the novel notion of offering a radio access network as a service. Its components may be instantiated on general purpose platforms with pooled resources (both radio and hardware ones) dimensioned on-demand, elastically and following the pay-per-use principle. A novel architecture is proposed that supports this concept. The architecture's success is in its modularity, well-defined functional elements and clean separation between operational and control functions. By moving much processing traditionally located in hardware for computation in the cloud, it allows the optimisation of hardware utilization and reduction of deployment and operation costs. It enables operators to upgrade their network as well as quickly deploy and adapt resources to demand. Also, new players may easily enter the market, permitting a virtual network operator to provide connectivity to its users.
Resumo:
Dicto is a declarative language for specifying architectural rules using a single uniform notation. Once defined, rules can automatically be validated using adapted off-the-shelf tools.
Resumo:
Cloudification of the Centralized-Radio Access Network (C-RAN) in which signal processing runs on general purpose processors inside virtual machines has lately received significant attention. Due to short deadlines in the LTE Frequency Division Duplex access method, processing time fluctuations introduced by the virtualization process have a deep impact on C-RAN performance. This paper evaluates bottlenecks of the OpenAirInterface (OAI is an open-source software-based implementation of LTE) cloud performance, provides feasibility studies on C-RAN execution, and introduces a cloud architecture that significantly reduces the encountered execution problems. In typical cloud environments, the OAI processing time deadlines cannot be guaranteed. Our proposed cloud architecture shows good characteristics for the OAI cloud execution. As an example, in our setup more than 99.5% processed LTE subframes reach reasonable processing deadlines close to performance of a dedicated machine.