31 resultados para Soft magnetic material
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This case report describes the magnetic resonance imaging (MRI) findings and the treatment of a far lateral extrusion of disc material at the sixth and seventh lumbar vertebrae (L6-L7) in a five-year-old male Alpine Dachsbracke dog referred to our hospital for investigation of the complaint of a one week progressive lameness in the left pelvic limb and poorly localized back pain. An extra-foraminal left lateral disc herniation impinging on the sixth lumbar nerve root was diagnosed by MRI examinations. Due to the far lateral position of the extruded disc material on MRI, surgical opening of the spinal canal was not necessary. Removal of the herniated soft disc material impinging on the L6 nerve root, and fenestration of the L6-L7 disc was performed laterally. To the author's knowledge 'far-lateral' disc herniation beyond the neuroforamen without any spinal canal contact has not been described in dogs until now. A complete recovery with no evidence of pain was achieved only after a couple of weeks after surgery. We acknowledge that it is possible that other pathological mechanisms may have contributed to clinical signs and to a delayed recovery.
Resumo:
Keel bone fractures and deviations are one of the major welfare and health issues in commercial laying hens. In non-cage housing systems like aviaries, falls and collisions with perches and other parts of the housing system are assumed to be one of the main causes for the high incidence of keel bone damage. The objectives of this study were to investigate the effectiveness of a soft perch material to reduce keel bone fractures and deviations in white (Dekalb White) and brown laying hens (ISA Brown) kept in an aviary system under commercial conditions. In half of 20 pens, all hard, metal perches were covered with a soft polyurethane material. Palpation of 20 hens per pen was conducted at 18, 21, 23, 30, 38, 44 and 64 weeks of age. Production data including egg laying rate, floor eggs, mortality and feed consumption were collected over the whole laying period. Feather condition and body mass was assessed twice per laying period. The results revealed that pens with soft perches had a reduced number of keel bone fractures and deviations. Also, an interaction between hybrid and age indicated that the ISA hybrid had more fractured keel bones and fewer non-damaged keel bones compared with the DW hybrid at 18 weeks of age, a response that was reversed at the end of the experiment. This is the first study providing evidence for the effectiveness of a soft perch material within a commercial setting. Due to its compressible material soft perches are likely to absorb kinetic energy occurring during collisions and increase the spread of pressure on the keel bone during perching, providing a mechanism to reduce keel bone fractures and deviations, respectively. In combination with genetic selection for more resilient bones and new housing design, perch material is a promising tool to reduce keel bone damage in commercial systems.
Resumo:
Clinical application of ozone gas has been shown to arrest the progression of dentinal caries in children. In this study, we compare the immediate effects of gaseous ozone and chlorhexidine gel on bacteria in cavitated carious lesions in children. Forty children, each with at least two open occlusal carious lesions, were enrolled in the study. Two teeth were chosen randomly. In one lesion, overlying soft biological material was removed, whilst the other lesion was not excavated. Cavities were rinsed with sterile water and dried with air. A standardised sample was taken from the mesial part of each lesion. Then, gaseous ozone (HealOzone) or 1% chlorhexidine gel (Corsodyl) was applied for 30 s on both lesions of 20 children each, and a second sample was taken from the distal part of each lesion. The anaerobic microbiota was cultivated; the number of colony forming units was calculated per milligram sample. The two-sided paired t test showed no significant (P > 0.05) differences in the reduction of total bacterial counts per milligram comparing samples before and after ozone or chlorhexidine application. The tests also showed no statistically significant difference whether the superficial decayed dentine had been removed before ozone or with chlorhexidine treatment or not. It can be concluded that gaseous ozone or chlorhexidine gel application for 30 s to deep occlusal carious cavities had no significant immediate antimicrobial effects whether the superficial decayed layers dentine were removed or not.
Resumo:
Objective: To compare the soft and hard tissue healing and remodeling around tissue-level implants with different neck configurations after at least 1 year of functional loading. Material and methods: Eighteen patients with multiple missing teeth in the posterior area received two implants inserted in the same sextant. One test (T) implant with a 1.8 mm turned neck and one control (C) implant with a 2.8 mm turned neck were randomly assigned. All implants were placed transmucosally to the same sink depth of approximately 1.8 mm. Peri-apical radiographs were obtained using the paralleling technique and digitized. Two investigators blinded to the implant type-evaluated soft and hard tissue conditions at baseline, 6 months and 1 year after loading. Results: The mean crestal bone levels and soft tissue parameters were not significantly different between T and C implants at all time points. However, T implants displayed significantly less crestal bone loss than C implants after 1 year. Moreover, a frequency analysis revealed a higher percentage (50%) of T implants with crestal bone levels 1–2 mm below the implant shoulder compared with C implants (5.6%) 1 year after loading. Conclusion: Implants with a reduced height turned neck of 1.8 mm may, indeed, lower the crestal bone resorption and hence, may maintain higher crestal bone levels than do implants with a 2.8 mm turned neck, when sunk to the same depth. Moreover, several factors other than the vertical positioning of the moderately rough SLA surface may influence crestal bone levels after 1 year of function.
Resumo:
Computed tomography (CT) and magnetic resonance (MR) imaging have become important elements of forensic radiology. Whereas the feasibility and potential of CT angiography have long been explored, postmortem MR angiography (PMMRA) has so far been neglected. We tested the feasibility of PMMRA on four adult human cadavers. Technical quality of PMMRA was assessed relative to postmortem CT angiography (PMCTA), separately for each body region. Intra-aortic contrast volumes were calculated on PMCTA and PMMRA with segmentation software. The results showed that technical quality of PMMRA images was equal to PMCTA in 4/4 cases for the head, the heart, and the chest, and in 3/4 cases for the abdomen, and the pelvis. There was a mean decrease in intra-aortic contrast volume from PMCTA to PMMRA of 46%. PMMRA is technically feasible and allows combining the soft tissue detail provided by MR and the information afforded by angiography.
Resumo:
Temporal hollowing due to temporal muscle atrophy after standard skull base surgery is common. Various techniques have been previously described to correct the disfiguring defect. Most often reconstruction is performed using freehand molded polymethylmethacrylate cement. This method and material are insufficient in terms of aesthetic results and implant characteristics. We herein propose reconstruction of such defects with a polyetheretherketone (PEEK)-based patient-specific implant (PSI) including soft-tissue augmentation to preserve normal facial topography. We describe a patient who presented with a large temporo-orbital hemangioma that had been repaired with polymethylmethacrylate 25 years earlier. Because of a toxic skin atrophy fistula, followed by infection and meningitis, this initial implant had to be removed. The large, disfiguring temporo-orbital defect was reconstructed with a PEEK-based PSI. The lateral orbital wall and the temporal muscle atrophy were augmented with computer-aided design and surface modeling techniques. The operative procedure to implant and adopt the reconstructed PEEK-based PSI was simple, and an excellent cosmetic outcome was achieved. The postoperative clinical course was uneventful over a 5-year follow-up period. Polyetheretherketone-based combined bony and soft contour remodeling is a feasible and effective method for cranioplasty including combined bone and soft-tissue reconstruction of temporo-orbital defects. Manual reconstruction of this cosmetically delicate area carries an exceptional risk of disfiguring results. Augmentation surgery in this anatomic location needs accurate PSIs to achieve satisfactory cosmetic results. The cosmetic outcome achieved in this case is superior compared with previously reported techniques.
Resumo:
OBJECTIVE: To investigate causes of the lack of clinical improvement after thoracolumbar disc surgery. STUDY DESIGN: Case-control magnetic resonance imaging (MRI) study. ANIMALS: Chondrodystrophic dogs with acute thoracolumbar disc disease treated by hemilaminectomy: 10 that had no short-term clinical improvement and 12 with "normal" clinical improvement. METHODS: Dogs that had surgery for treatment of intervertebral disc extrusion (2003-2008) where thoracolumbar disc disease was confirmed by MRI were evaluated to identify dogs that had lack of clinical improvement after surgery. Ten dogs with delayed recovery or clinical deterioration were reexamined with MRI and compared with 12 dogs with normal recovery and MRI reexamination after 6 weeks (control group). RESULTS: Of 173 dogs, 10 (5.8%) had clinical deterioration within 1-10 days after surgery. In 8 dogs, residual spinal cord compression was identified on MRI. Bleeding was present in 1 dog. In 3 dogs, the cause was an incorrect approach and insufficient disc material removal. In 3 dogs, recurrence occurred at the surgical site. In 1 dog, the centrally located extruded material was shifted to the contralateral side during surgery. These 8 dogs had repeat surgery and recovery was uneventful. In 2 dogs, deterioration could not be associated with a compressive disc lesion. Hemorrhagic myelomalacia was confirmed by pathologic examination in 1 dog. The other dog recovered after 6 months of conservative management. CONCLUSION: Delayed postsurgical recovery or deterioration is commonly associated with newly developed and/or remaining compressive disc lesion. CLINICAL RELEVANCE: We recommend early MRI reexamination to assess the postsurgical spinal canal and cord, and to plan further therapeutic measures in chondrodystrophic dogs with delayed recovery after decompressive hemilaminectomy for thoracolumbar disc disease.
Resumo:
In forensic autopsies, one of the most important and common signs of violence to the neck is hemorrhages of the soft tissues. The Institute of Forensic Medicine in Bern evaluates the usefulness of postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) of forensic cases prior to autopsy. The aim of this study was to prove the sensitivity of postmortem MSCT and MRI in the detection of hemorrhages of the neck muscles. A full body scan prior to and a detailed scan of the explanted larynx after autopsy were performed. MSCT detected multiple fractures of the larynx. Detailed MRI was able to demonstrate the hemorrhage of the left posterior cricoarytenoid muscle. The minor hemorrhage of the right posterior cricoarytenoid muscle could not be detected with certainty. Although more experience is required, we conclude that combined MRI and MSCT examination is a useful tool for documentation and examination of neck muscle hemorrhages in forensic cases.
Resumo:
Based on only one objective and several subjective signs, the forensic classification of strangulation incidents concerning their life-threatening quality can be problematic. Reflecting that it is almost impossible to detect internal injuries of the neck with the standard forensic external examination, we examined 14 persons who have survived manual and ligature strangulation or forearm choke holds using MRI technique (1.5-T scanner). Two clinical radiologists evaluated the neck findings independently. The danger to life was evaluated based on the "classical" external findings alone and in addition to the radiological data. We observed hemorrhaging in the subcutaneous fatty tissue of the neck in ten cases. Other frequent findings were hemorrhages of the neck and larynx muscles, the lymph nodes, the pharynx, and larynx soft tissues. Based on the classical forensic strangulation findings with MRI, eight of the cases were declared as life-endangering incidents, four of them without the presence of petechial hemorrhage but with further signs of impaired brain function due to hypoxia. The accuracy of future forensic classification of the danger to life will probably be increased when it is based not only on one objective and several subjective signs but also on the evidence of inner neck injuries. However, further prospective studies including larger cohorts are necessary to clarify the value of the inner neck injuries in the forensic classification of surviving strangulation victims.
Resumo:
OBJECTIVE: The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. STUDY DESIGN: Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. RESULTS: The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. CONCLUSIONS: The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Resumo:
Because of superior soft-tissue contrast compared to other imaging techniques, non-invasive abdominal magnetic resonance imaging (MRI) is ideal for monitoring organ regeneration, tissue repair, cancer stage, and treatment effects in a wide variety of experimental animal models. Currently, sophisticated MR protocols, including technically demanding procedures for motion artefact compensation, achieve an MRI resolution limit of < 100 microm under ideal conditions. However, such a high spatial resolution is not required for most experimental rodent studies. This article describes both a detailed imaging protocol for MR data acquisition in a ubiquitously and commercially available 1.5 T MR unit and 3-dimensional volumetry of organs, tissue components, or tumors. Future developments in MR technology will allow in vivo investigation of physiological and pathological processes at the cellular and even the molecular levels. Experimental MRI is crucial for non-invasive monitoring of a broad range of biological processes and will further our general understanding of physiology and disease.
Resumo:
AIM: To evaluate the healing outcome of soft tissue dehiscence coverage at implant sites. MATERIAL AND METHODS: Ten patients with one mucosal recession defect at an implant site and a contralateral unrestored clinical crown without recession were recruited. The soft tissue recessions were surgically covered using a coronally advanced flap in combination with a free connective tissue graft. Healing was studied at 1, 3 and 6 months post-operatively. RESULTS: Soft tissue dehiscences were covered with a coronal overcompensation of the flap margin up to 1.2 mm after the procedure. After 1 month, the coverage shrank to a mean of 75%, after 3 months to 70% and after 6 months to 66%. CONCLUSIONS: The implant sites revealed a substantial, clinically significant improvement following coronal mucosal displacement in combination with connective tissue grafting, but in none of the sites, a could complete implant soft tissue dehiscence coverage be achieved.
Resumo:
OBJECTIVES: To evaluate the influence of flap tension on the tearing characteristics of mucosal tissue samples in relation to various suture and needle characteristics. MATERIAL AND METHODS: Lining and masticatory mucosal tissue samples obtained from pig jaws were prepared for in vitro testing. Tension tearing diagrams of 60 experiments were traced for 3-0, 5-0 and 7-0 sutures with applied forces up to 20 N. In the second part, the same experiments were repeated with 100 diagrams to test the influence of needle characteristics with 5-0 and 6-0 sutures using only gingival tissue samples. RESULTS: 3-0 sutures mainly lead to tissue breakage at an average of 13.4 N. In contrast, 7-0 sutures only resulted in breakage of the thread at a mean applied force of 3.7 N. With 5-0 sutures, both events occurred at random at a mean force of 14.6 N. Irrespective of the needle characteristics, the mean breaking force for gingival samples with 5-0 and 6-0 sutures was approximately 10 N. CONCLUSIONS: Tissue trauma may be reduced by choosing finer suture diameters, because thinner (6-0, 7-0) sutures lead to thread breakage rather than tissue breakage.
Resumo:
INTRODUCTION: Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. MATERIAL AND METHODS: The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared with the corresponding variables obtained by the 3D MOCART score using the Pearson correlation coefficient; additionally the subjective quality and possible artifacts of the MR sequences were analyzed. RESULTS: The correlation between the standard 2D MOCART score and the new 3D MOCART showed for the 8 variables "defect fill," "cartilage interface," "surface," "adhesions," "structure," "signal intensity," "subchondral lamina," and "effusion"-a highly significant (P < 0.001) correlation with a Pearson coefficient between 0.566 and 0.932. The variable "bone marrow edema" correlated significantly (P < 0.05; Pearson coefficient: 0.257). The subjective quality of the 3 standard MR sequences was comparable to the isotropic 3D-TrueFISP sequence. Artifacts were more frequently visible within the 3D-TrueFISP sequence. CONCLUSION: In the clinical routine follow-up after cartilage repair, the 3D MOCART score, assessed by only 1 high-resolution isotropic MR sequence, provides comparable information than the standard 2D MOCART score. Hence, the new 3D MOCART score has the potential to combine the information of the standard 2D MOCART score with the possible advantages of isotropic 3D MRI at high-field. A clear limitation of the 3D-TrueFISP sequence was the high number of artifacts. Future studies have to prove the clinical benefits of a 3D MOCART score.
Resumo:
Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).