6 resultados para Society for Establishing Useful Manufactures.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We evaluated the score for disseminated intravascular coagulation (DIC) recently published by the International Society for Thrombosis and Haemostasis (ISTH) in a well-defined series of sepsis patients. Thirty-two patients suffering from severe sepsis and eight patients with septic shock were evaluated following the ISTH DIC score. Fibrin monomer and D-dimer were chosen as fibrin-related markers (FRM), respectively. DIC scores for nonsurvivors (n = 13) as well as for septic shock patients were higher (P < 0.04) compared with survivors and patients with severe sepsis, respectively. Using fibrin monomer and D-dimer, 30 and 25% of patients suffered from overt DIC. Overt DIC was associated with significantly elevated thrombin-antithrombin complexes and plasminogen activator inhibitor type-1 levels as well as with significantly lower factor VII clotting activity. Patients with overt DIC had a significantly higher risk of death and of developing septic shock. Since more than 95% of the sepsis patients had elevated FRM, the DIC score was strongly dependent on prolongation of the prothrombin time and platelet counts. The ISTH DIC score is useful to identify patients with coagulation activation, predicting fatality and disease severity. It mainly depends on the prolongation of the prothrombin time and platelet counts.
Resumo:
Selective expression of opsins in genetically defined neurons makes it possible to control a subset of neurons without affecting nearby cells and processes in the intact brain, but light must still be delivered to the target brain structure. Light scattering limits the delivery of light from the surface of the brain. For this reason, we have developed a fiber-optic-based optical neural interface (ONI), which allows optical access to any brain structure in freely moving mammals. The ONI system is constructed by modifying the small animal cannula system from PlasticsOne. The system for bilateral stimulation consists of a bilateral cannula guide that has been stereotactically implanted over the target brain region, a screw cap for securing the optical fiber to the animal's head, a fiber guard modified from the internal cannula adapter, and a bare fiber whose length is customized based on the depth of the target region. For unilateral stimulation, a single-fiber system can be constructed using unilateral cannula parts from PlasticsOne. We describe here the preparation of the bilateral ONI system and its use in optical stimulation of the mouse or rat brain. Delivery of opsin-expressing virus and implantation of the ONI may be conducted in the same surgical session; alternatively, with a transgenic animal no opsin virus is delivered during the surgery. Similar procedures are useful for deep or superficial injections (even for neocortical targets, although in some cases surface light-emitting diodes or cortex-apposed fibers can be used for the most superficial cortical targets).
Resumo:
In recent decades, a number of global frameworks have been developed for disaster risk reduction (DRR). The Hyogo Framework for Action 2005–2015 and its successor document, the Sendai Framework for Disaster Risk Reduction, adopted in Japan in March 2015, provide general guidance for reducing risks from natural hazards. This is particularly important for mountainous areas, but DRR for mountain areas and sustainable mountain development received little attention in the recent policy debate. The question remains whether the Hyogo and Sendai frameworks can provide guidance for sustainable mountain development. This article evaluates the 2 frameworks in light of the special challenges of DRR in mountain areas and argues that, while the frameworks offer valuable guidance, they need to be further adapted for local contexts—particularly for mountain areas, which require special attention because of changing risk patterns like the effects of climate change and high land-use pressure.
Resumo:
The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.
Resumo:
An Internet portal accessible at www.gdb.unibe.ch has been set up to automatically generate color-coded similarity maps of the ChEMBL database in relation to up to two sets of active compounds taken from the enhanced Directory of Useful Decoys (eDUD), a random set of molecules, or up to two sets of user-defined reference molecules. These maps visualize the relationships between the selected compounds and ChEMBL in six different high dimensional chemical spaces, namely MQN (42-D molecular quantum numbers), SMIfp (34-D SMILES fingerprint), APfp (20-D shape fingerprint), Xfp (55-D pharmacophore fingerprint), Sfp (1024-bit substructure fingerprint), and ECfp4 (1024-bit extended connectivity fingerprint). The maps are supplied in form of Java based desktop applications called “similarity mapplets” allowing interactive content browsing and linked to a “Multifingerprint Browser for ChEMBL” (also accessible directly at www.gdb.unibe.ch) to perform nearest neighbor searches. One can obtain six similarity mapplets of ChEMBL relative to random reference compounds, 606 similarity mapplets relative to single eDUD active sets, 30 300 similarity mapplets relative to pairs of eDUD active sets, and any number of similarity mapplets relative to user-defined reference sets to help visualize the structural diversity of compound series in drug optimization projects and their relationship to other known bioactive compounds.