33 resultados para Smooth Cayenne Pineapple
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
Intravenous immunoglobulin (IVIG) is the first-line therapy for multifocal motor neuropathy (MMN). This open-label multi-centre study (NCT00701662) assessed the efficacy, safety, and convenience of subcutaneous immunoglobulin (SCIG) in patients with MMN over 6 months, as an alternative to IVIG. Eight MMN patients (42-66 years), on stable IVIG dosing, received weekly SCIG at doses equivalent to previous IVIG using a "smooth transition protocol". Primary efficacy endpoint was the change from baseline to week 24 in muscle strength. Disability, motor function, and health-related quality of life (HRQL) endpoints were also assessed. One patient deteriorated despite dose increase and was withdrawn. Muscle strength, disability, motor function, and health status were unchanged in all seven study completers who rated home treatment as extremely good. Four experienced 18 adverse events, of which only two were moderate. This study suggests that MMN patients with stable clinical course on regular IVIG can be switched to SCIG at the same monthly dose without deterioration and with a sustained overall improvement in HRQL.
Resumo:
OBJECTIVE: To evaluate the expression of the 5-hydroxytryptamine 4 (5-HT4) receptor subtype and investigate the modulating function of those receptors on contractility in intestinal tissues obtained from horses without gastrointestinal tract disease. SAMPLE POPULATION: Smooth muscle preparations from the duodenum, ileum, and pelvic flexure collected immediately after slaughter of 24 horses with no history or signs of gastrointestinal tract disease. PROCEDURES: In isometric organ baths, the contractile activities of smooth muscle preparations in response to 5-hydroxytryptamine and electric field stimulation were assessed; the effect of tegaserod alone or in combination with 5-hydroxytryptamine on contractility of intestinal specimens was also investigated. Presence and distribution of 5-HT4 receptors in intestinal tissues and localization on interstitial cells of Cajal were examined by use of an immunofluorescence technique. RESULTS: Widespread 5-HT4 receptor immunoreactivity was observed in all intestinal smooth muscle layers; 5-HT4 receptors were absent from the myenteric plexus and interstitial cells of Cajal. In electrical field-stimulated tissue preparations of duodenum and pelvic flexure, tegaserod increased the amplitude of smooth muscle contractions in a concentration-dependent manner. Preincubation with tegaserod significantly decreased the basal tone of the 5-HT-evoked contractility in small intestine specimens, compared with the effect of 5-HT alone, thereby confirming that tegaserod was acting as a partial agonist. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, 5-HT4 receptors on smooth muscle cells appear to be involved in the contractile response of the intestinal tract to 5-hydroxytryptamine. Results suggest that tegaserod may be useful for treatment of reduced gastrointestinal tract motility in horses.
Resumo:
Rationale: Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. Objective: We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast–cardiomyocyte cross-talk. Methods and Results: Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. Conclusions: The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.
Resumo:
We describe a hitherto undocumented variant of dimorphic pituitary neoplasm composed of an admixture of neurosecretory cells and profuse leiomyomatous stroma around intratumoral vessels. Radiologically perceived as a macroadenoma of 3.8 cm in diameter, this pituitary mass developed in an otherwise healthy 43-year-old female. At the term of a yearlong history of amenorrhea and progressive bitemporal visual loss, subtotal resection was performed via transsphenoidal microsurgery. Discounting mild hyperprolactinemia, there was no evidence of excess hormone production. Histologically, solid sheets, nests and cords of epithelial-looking, yet cytokeratin-negative cells were seen growing in a richly vascularized stroma of spindle cells. While strong immunoreactivity for NCAM, Synaptophysin and Chromogranin-A was detected in the former, the latter showed both morphological and immunophenotypic hallmarks of smooth muscle, being positive for vimentin, muscle actin and smooth muscle actin. Architectural patterns varied from monomorphous stroma-dominant zones through biphasic neuroendocrine-leiomyomatous areas, to pseudopapillary fronds along vascular cores. Only endothelia were labeled with CD34. Staining for S100 protein and GFAP, characteristics of sustentacular cells, as well as bcl-2 and c-kit was absent. Except for alpha-subunit, anterior pituitary hormones tested negative in tumor cells, as did a panel of peripheral endocrine markers, including serotonin, somatostatin, calcitonin, parathormone and vasoactive intestinal polypeptide. Mitotic activity was absent and the MIB-1 labeling index low (1-2%). While assignment of this lesion to any established neoplastic entity is not forthcoming, we propose it is being considered as a low-grade neuroendocrine tumor possibly related to null cell adenoma.
Resumo:
Continuous changes in the length of smooth muscles require a highly organized sarcolemmal structure. Yet, smooth muscle cells also adapt rapidly to altered environmental cues. Their sarcolemmal plasticity must lead to profound changes which affect transmembrane signal transduction as well as contractility. We have established porcine vascular and human visceral smooth muscle cultures of epithelioid and spindle-shaped morphology and determined their plasma membrane properties. Epithelioid cells from both sources contain a higher ratio of cholesterol to glycerophospholipids, and express a less diverse range of lipid-associated annexins. These findings point to a reduction in efficiency of membrane segregation in epithelioid cells. Moreover, compared to spindle-shaped cells, cholesterol is more readily extracted from epithelioid cells with methyl-beta-cyclodextrin and its synthesis is more susceptible to inhibition with lovastatin. The inability of epithelioid cells to process vasoactive metabolites, such as angiotensin or nucleotides further indicates that contractile properties are impaired. Phenotypic plasticity extends beyond the loss of smooth muscle cell marker genes. The plasma membrane has undergone profound functional changes which are incompatible with cyclic foreshortening, but might be important in the development of vascular disease.
Resumo:
The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.
Resumo:
BACKGROUND: The remarkable patency of internal mammary artery (MA) grafts compared to saphenous vein (SV) grafts has been related to different biological properties of the two blood vessels. We examined whether proliferation and apoptosis of vascular smooth muscle cells (VSMC) from human coronary artery bypass vessels differ according to patency rates. METHODS AND RESULTS: Proliferation rates to serum or platelet-derived growth factor (PDGF)-BB were lower in VSMC from MA than SV. Surface expression of PDGF beta-receptor was slightly lower, while that of alpha-receptor was slightly higher in MA than SV. Cell cycle distribution, expression of cyclin E, cdk2, p21, p27, p57, and cdk2 kinase activity were identical in PDGF-BB-stimulated cells from MA and SV. However, apoptosis rates were higher in MA than SV determined by lactate dehydrogenase release, DNA fragmentation, and Hoechst 33258 staining. Moreover, caspase inhibitors (Z-VAD-fmk, Boc-D-fmk) abrogated the different proliferation rates of VSMC from MA versus SV. Western blotting and GSK3-beta kinase assay revealed lower Akt activity in VSMC from MA versus SV, while total Akt expression was identical. Adenoviral transduction of a constitutively active Akt mutant abrogated the different proliferation rates of VSMC from MA versus SV. CONCLUSIONS: Higher apoptosis rates due to lower Akt activity rather than different cell cycle regulation account for the lower proliferation of VSMC from MA as compared to SV. VSMC apoptosis may protect MA from bypass graft disease.