4 resultados para Slow-Moving Vehicle Identification Emblems.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use.
Resumo:
The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion. The disadvantages of this therapeutic approach include the destruction of healthy cartilage-which may predispose the joint to osteoarthritic degeneration-the necessarily restricted availability of healthy tissue, the limited proliferative capacity of the donor cells-which declines with age-and the need for two surgical interventions. We postulated that it should be possible to induce synovial stem cells, which are characterized by high, age-independent, proliferative and chondrogenic differentiation capacities, to lay down cartilage within the outer juxtasynovial space after the transcutaneous implantation of a carrier bearing BMP-2 in a slow-release system. The chondrocytes could be isolated on-site and immediately used for ACI. To test this hypothesis, Chinchilla rabbits were used as an experimental model. A collagenous patch bearing BMP-2 in a slow-delivery vehicle was sutured to the inner face of the synovial membrane. The neoformed tissue was excised 5, 8, 11 and 14 days postimplantation for histological and histomorphometric analyses. Neoformed tissue was observed within the outer juxtasynovial space already on the 5th postimplantation day. It contained connective and adipose tissues, and a central nugget of growing cartilage. Between days 5 and 14, the absolute volume of cartilage increased, attaining a value of 12 mm(3) at the latter juncture. Bone was deposited in measurable quantities from the 11th day onwards, but owing to resorption, the net volume did not exceed 1.5 mm(3) (14th day). The findings confirm our hypothesis. The quantity of neoformed cartilage that is deposited after only 1 week within the outer juxtasynovial space would yield sufficient cells for ACI. Since the BMP-2-bearing patches would be implanted transcutaneously in humans, only one surgical or arthroscopic intervention would be called for. Moreover, most importantly, sufficient numbers of cells could be generated in patients of all ages.
Resumo:
Context. We investigate the dust coma within the Hill sphere of comet 67P/Churyumov-Gerasimenko. Aims. We aim to determine osculating orbital elements for individual distinguishable but unresolved slow-moving grains in the vicinity of the nucleus. In addition, we perform photometry and constrain grain sizes. Methods. We performed astrometry and photometry using images acquired by the OSIRIS Wide Angle Camera on the European Space Agency spacecraft Rosetta. Based on these measurements, we employed standard orbit determination and orbit improvement techniques. Results. Orbital elements and effective diameters of four grains were constrained, but we were unable to uniquely determine them. Two of the grains have light curves that indicate grain rotation. Conclusions. The four grains have diameters nominally in the range 0.14-0.50 m. For three of the grains, we found elliptic orbits, which is consistent with a cloud of bound particles around the nucleus. However, hyperbolic escape trajectories cannot be excluded for any of the grains, and for one grain this is the only known option. One grain may have originated from the surface shortly before observation. These results have possible implications for the understanding of the dispersal of the cloud of bound debris around comet nuclei, as well as for understanding the ejection of large grains far from the Sun.
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.