4 resultados para Site investigation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matrix pore water in the connected inter- and intragranular pore space of low-permeable crystalline bedrock interacts with flowing fracture groundwater predominately by diffusion. Based on the slow exchange between the two water reservoirs, matrix pore water acts as an archive of past changes in fracture groundwater compositions and thus of the palaeohydrological history of a site. Matrix pore water of crystalline bedrock from the Olkiluoto investigation site (SW Finland) was characterised using the stable water isotopes (δ18O, δ2H), combined with the concentrations of dissolved chloride and bromide as natural tracers. The comparison of tracer concentrations in pore water and present-day fracture groundwater suggest for the pore water the presence of old, dilute meteoric water components that infiltrated into the fractures during various warm climate stages. These different meteoric components can be discerned based on the diffusion distance between the two reservoirs and be brought into context with the palaeohydrological evolution of the site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure of the resting state of cytochrome P450cam (CYP101), a heme thiolate protein, shows a cluster of six water molecules in the substrate binding pocket, one of which is coordinating to iron(III) as sixth ligand. The resting state is low-spin and changes to high-spin when substrate camphor binds and H2O is removed. In contrast to the protein, previously synthesised enzyme models such as H2O[BOND]FeIII(porph)(ArS−) were shown to be purely high-spin. Iron(S−)porphyrins with different distal sites mimicking proposed remote effects have been prepared and studied by cw-EPR. The results indicate that the low-spin of the resting state of P450cam is due to the fact that the water molecule coordinating to iron has an OH−-like character because of hydrogen bonding and polarisation of the water cluster, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In summer 2011, the two Russian MIR sub- mersibles were brought to Switzerland to perform deep water dives in Lake Geneva. Research teams from several environmental science institutes, both national and inter- national, participated in this interdisciplinary effort to investigate the deeper parts of Lake Geneva. Using the MIRs allowed the scientists to see and precisely select the sites where they could extract specific sediment cores and carry out detailed in situ measurements at the sediment– water boundary. One focus site was the surrounding of the outlet of the wastewater treatment plant of the City of Lausanne, which discharges into the Vidy Bay. The investigations concentrated on the pollution of the local sediments, pollution-related ecotoxicological risks, micro- bial activity and spreading and removal of the effluents from the bay to the open waters of the lake. The other focus site was the Rhoˆne River delta and its subaquatic canyons, which formed as a result of the long-term interplay of the deposition of river-borne sediments and flood-triggered canyon erosion events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3′-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.