4 resultados para Sintering.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the bidirectional reflectance of spherical micrometer-sized water-ice particles in the visible spectral range over a wide range of incidence and emission angles. The small ice spheres were produced by spraying fine water droplets directly into liquid nitrogen. The resulting mean particle radii are 1.47 + 0.96 - 0.58 μm. Such a material shares many properties with ice in comets and at the surface of icy satellites. Measurements show that the fresh sample material is highly backscattering, contrasting with natural terrestrial snow and frost. The formation of agglomerates of particles during the sample production results in a noticeable variability of the photometric properties of the samples in their initial state. We have also observed significant temporal evolutions of the scattering behavior of the samples, shifting towards more forward scattering within some tens of hours, resulting most likely from sintering processes. All reflectance data are fitted by the Hapke photometric model (1993 and 2002 formulation) with a one/two/three-parameter Henyey-Greenstein phase function and the resulting Hapke parameters are provided. These parameters can be used to compare laboratory results with the observed photometric behaviors of astronomical objects. We show, in particular, that the optical properties of the fresh micrometer-sized ice samples can be used to reproduce the predominant backscattering in the phase curves of Enceladus and Europa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen diffusion plays an important role in grain growth and densification during the sintering of alumina ceramics and governs high-temperature processes such as creep. The atomistic mechanism for oxygen diffusion in alumina is, however, still debated; atomistic calculations not being able to match experimentally determined activation energies for oxygen vacancy diffusion. These calculations are, however, usually performed for perfectly pure crystals, whereas virtually every experimental alumina sample contains a significant fraction of impurity/dopants ions. In this study, we use atomistic defect cluster and nudged elastic band (NEB) calculations to model the effect of Mg impurities/dopants on defect binding energies and migration barriers. We find that oxygen vacancies can form energetically favorable clusters with Mg, which reduces the number of mobile species and leads to an additional 1.5 eV energy barrier for the detachment of a single vacancy from Mg. The migration barriers of diffusive jumps change such that an enhanced concentration of oxygen vacancies is expected around Mg ions. Mg impurities were also found to cause destabilization of certain vacancy configurations as well as enhanced vacancy–vacancy interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close to decameter-high cliffs, or isolated without structural relation to the surrounding terrain. They can be up to ten times brighter than the average surface of the comet at visible wavelengths and display a significantly bluer spectrum. They do not exhibit significant changes over a period of a few weeks. All these observations are consistent with exposure of water ice at the surface of boulders produced by dislocation of the weakly consolidated layers that cover large areas of the nucleus. Laboratory experiments show that under simulated comet surface conditions, analog samples acquire a vertical stratification with an uppermost porous mantle of refractory dust overlaying a layer of hard ice formed by recondensation or sintering under the insulating dust mantle. The evolution of the visible spectrophotometric properties of samples during sublimation is consistent with the contrasts of brightness and color seen at the surface of the nucleus. Clustered bright spots are formed by the collapse of overhangs that is triggered by mass wasting of deeper layers. Isolated spots might be the result of the emission of boulders at low velocity that are redepositioned in other regions.