3 resultados para Single Mn atom

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of electric potential over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric potential was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric potential mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom energy spectrometer SARA/CENA on Chandrayaan-1. Electrostatic potential larger than +135 V inside the Gerasimovic anomaly is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric potential can influence the local plasma and dust environment near the magnetic anomaly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinvestigation of more than 40 samples of minerals belonging to the wagnerite group (Mg, Fe, Mn)2(PO4)(F,OH) from diverse geological environments worldwide, using single-crystal X-ray diffraction analysis, showed that most crystals have incommensurate structures and, as such, are not adequately described with known polytype models (2b), (3b), (5b), (7b) and (9b). Therefore, we present here a unified superspace model for the structural description of periodically and aperiodically modulated wagnerite with the (3+1)-dimensional superspace group C2/c(0[beta]0)s0 based on the average triplite structure with cell parameters a [asymptotically equal to] 12.8, b [asymptotically equal to] 6.4, c [asymptotically equal to] 9.6 Å, [beta] [asymptotically equal to] 117° and the modulation vectors q = [beta]b*. The superspace approach provides a way of simple modelling of the positional and occupational modulation of Mg/Fe and F/OH in wagnerite. This allows direct comparison of crystal properties.