13 resultados para Simulation environment
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
Resumo:
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.
Resumo:
Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.
Resumo:
In the last years, simulation training has become widespread in different areas of medicine due to social expectations, political accountability and professional regulation. Different types of simulators allow to improve knowledge, skills, communication and team behavior. Simulation sessions have been proven to shorten the learning curve and allow education in a safe environment. Patients on dialysis are an expanding group. They often suffer from several comorbidities and need complex surgical procedures with regard to their dialysis access. Therefore, education in evidence-based algorithms is as important as teaching of practical skills. In this chapter, we are presenting an overview of available dialysis access training modalities. We are convinced that simulation will become more important in the near future and has a substantial impact on strategies to improve aspects of patient safety. © 2015 S. Karger AG, Basel.
Resumo:
Up to 15 people can participate in the game, which is supervised by a moderator. Households consisting of 1-5 people discuss options for diversification of household strategies. Aim of the game: By devising appropriate strategies, households seek to stand up to various types of events while improving their economic and social situation and, at the same time, taking account of ecological conditions. The annual General Community Meeting (GCM) provides an opportunity for households to create a general set-up at the local level that is more or less favourable to the strategies they are pursuing. The development of a community investment strategy, to be implemented by the GCM, and successful coordination between households will allow players to optimise their investments at the household level. The household who owns the most assets at the end of the game wins. Players participate very actively, as the game stimulates lively and interesting discussions. They find themselves confronted with different types of decision-making related to the reality of their daily lives. They explore different ways to model their own household strategies and discuss risks and opportunities. Reflections on the course of the game continually refer to the real-life situations of the participants.
Resumo:
Three teams consisting of 2 to 5 persons each play the game. Each team represents a farm. Each team decides jointly on its strategy. In annual meetings in winter, the farm teams jointly discuss, evaluate and decide on how to proceed and actions to be taken. The farms make use of three different pasture areas (village pasture, intensive pasture and summer pasture) for grazing their livestock. The carrying capacity of each pasture area is different and varies according to the season. In each season, the farms have to decide on how many livestock units to graze on which pasture. Overgrazing and pasture degradation occur if the total number of livestock units exceeds the carrying capacity of a specific pasture area. Overgrazing results in a reduction of pasture productivity. To diversify and improve their livelihood strategy farms can make individual investments to increase productivity at the farm level, eg. in fodder production or in income generating activities. At the community level, collective investments can be made which may influence livestock and household economy, e.g. rehabilitate and improve pasture productivity, improve living conditions on remote pastures etc. Events occurring in the course of the game represent different types of (risk) factors such as meteorology, market, politics etc. that may positively or negatively influence livestock production and household economy. A sustainable management of pastures requires that farms actively regulate the development of their herds, that they take measures to prevent pasture degradation and to improve pasture productivity, and that they find a balance between livestock economy and other productive activities. The game has a double aim: a) each farm aims at its economic success and prosperity, and b) the three farm teams jointly have to find and implement strategies for a sustainable use of pasture areas.
Resumo:
Main objective of the game is to increase the coping capacity of players and familiarise them with the Integrated Disaster Reduction Approach. The game is intended to prepare for and introduce the players to a subsequent Learning for Sustainability capacity building workshop for community leaders. The game represents a typical emergency situation resulting from a natural disaster. Before and after the event, adequate measures help to prevent or minimise potential damages. Once a disaster has occurred, concerted actions and immediate measures need to be taken to rescue as much as possible (human lives, livestock, material) and safeguard the village against further damage and losses. In the course of the game, each playing team can proof its knowledge on adequate measures that have to be taken in order to avoid or reduce losses related to natural disasters. Such measures relate to assessment and monitoring of risks, prevention and mitigation measures, preparedness and response as well as recovery and reconstruction.
Resumo:
Au travers de stratégies appropriées, les ménages, appelés ici Unités de Production et de Consommation (UPC), cherchent à faire face à différents évènements et à améliorer leur situation économique et sociale tout en tenant compte des conditions écologiques. Au travers de l’Assemblée Générale Communale (AGC), les UPC peuvent créer des conditions cadres locales plus ou moins favorables aux stratégies qu’ils poursuivent. Par le développement d’une stratégie d’investissement communale mise en œuvre par l’AGC et une bonne coordination entre les UPC, les joueurs peuvent optimiser leurs investissements au niveau des ménages. Vainqueur est l’UPC qui à la fin du jeu dispose du plus grand patrimoine.
Resumo:
Three extended families live around a lake. One family are rice farmers, the second family are vegetable farmers, and the third are a family of livestock herders. All of them depend on the use of lake water for their production, and all of them need large quantities of water. All are dependent on the use of the lake water to secure their livelihood. In the game, the families are represented by their councils of elders. Each of the councils has to find means and ways to increase production in order to keep up with the growth of its family and their demands. This puts more and more pressure on the water resources, increasing the risk of overuse. Conflicts over water are about to emerge between the families. Each council of elders must try to pursue its families interests, while at the same time preventing excessive pressure on the water resources. Once a council of elders is no longer able to meet the needs of its family, it is excluded from the game. Will the parties cooperate or compete? To face the challenge of balancing economic well-being, sustainable resource management, and individual and collective interests, the three parties have a set of options for action at hand. These include power play to safeguard their own interests, communication and cooperation to negotiate with neighbours, and searching for alternatives to reduce pressure on existing water resources. During the game the players can experience how tensions may arise, increase and finally escalate. They realise what impact power play has and how alliances form, and the importance of trust-building measures, consensus and cooperation. From the insights gained, important conflict prevention and mitigation measures are derived in a debriefing session. The game is facilitated by a moderator, and lasts for 3-4 hours. Aim of the game: Each family pursues the objective of serving its own interests and securing its position through appropriate strategies and skilful negotiation, while at the same time optimising use of the water resources in a way that prevents their degradation. The end of the game is open. While the game may end by one or two families dropping out because they can no longer secure their subsistence, it is also possible that the three families succeed in creating a situation that allows them to meet their own needs as well as the requirements for sustainable water use in the long term. Learning objectives The game demonstrates how tension builds up, increases, and finally escalates; it shows how power positions work and alliances are formed; and it enables the players to experience the great significance of mutual agreement and cooperation. During the game and particularly during the debriefing and evaluation session it is important to link experiences made during the game to the players’ real-life experiences, and to discuss these links in the group. The resulting insights will provide a basis for deducing important conflict prevention and transformation measures.
Resumo:
The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near‐nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus. The Rosetta spacecraft is en route to comet 67P/Churyumov‐Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet’s dusty gas environment. In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov‐Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation [1] of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.
Resumo:
A computer simulation study describing the electrophoretic separation and migration of methadone enantiomers in presence of free and immobilized (2-hydroxypropyl)-β-CD is presented. The 1:1 interaction of methadone with the neutral CD was simulated by using experimentally determined mobilities and complexation constants for the complexes in a low-pH BGE comprising phosphoric acid and KOH. The use of complex mobilities represents free solution conditions with the chiral selector being a buffer additive, whereas complex mobilities set to zero provide data that mimic migration and separation with the chiral selector being immobilized, that is CEC conditions in absence of unspecific interaction between analytes and the chiral stationary phase. Simulation data reveal that separations are quicker, electrophoretic displacement rates are reduced, and sensitivity is enhanced in CEC with on-column detection in comparison to free solution conditions. Simulation is used to study electrophoretic analyte behavior at the interface between sample and the CEC column with the chiral selector (analyte stacking) and at the rear end when analytes leave the environment with complexation (analyte destacking). The latter aspect is relevant for off-column analyte detection in CEC and is described here for the first time via the dynamics of migrating analyte zones. Simulation provides insight into means to counteract analyte dilution at the column end via use of a BGE with higher conductivity. Furthermore, the impact of EOF on analyte migration, separation, and detection for configurations with the selector zone being displaced or remaining immobilized under buffer flow is simulated. In all cases, the data reveal that detection should occur within or immediately after the selector zone.
Resumo:
We model Callisto's exosphere based on its ice as well as non-ice surface via the use of a Monte-Carlo exosphere model. For the ice component we implement two putative compositions that have been computed from two possible extreme formation scenarios of the satellite. One composition represents the oxidizing state and is based on the assumption that the building blocks of Callisto were formed in the protosolar nebula and the other represents the reducing state of the gas, based on the assumption that the satellite accreted from solids condensed in the jovian sub-nebula. For the non-ice component we implemented the compositions of typical CI as well as L type chondrites. Both chondrite types have been suggested to represent Callisto's non-ice composition best. As release processes we consider surface sublimation, ion sputtering and photon-stimulated desorption. Particles are followed on their individual trajectories until they either escape Callisto's gravitational attraction, return to the surface, are ionized, or are fragmented. Our density profiles show that whereas the sublimated species dominate close to the surface on the sun-lit side, their density profiles (with the exception of H and H-2) decrease much more rapidly than the sputtered particles. The Neutral gas and Ion Mass (NIM) spectrometer, which is part of the Particle Environment Package (PEP), will investigate Callisto's exosphere during the JUICE mission. Our simulations show that NIM will be able to detect sublimated and sputtered particles from both the ice and non-ice surface. NIM's measured chemical composition will allow us to distinguish between different formation scenarios. (C) 2015 Elsevier Inc. All rights reserved.