9 resultados para Simplified Models.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb(-1) of root s = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results.
Resumo:
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no high-p(T) electrons or muons is presented. The data represent the complete sample recorded in 2011 by the ATLAS experiment in 7 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 4.7 fb(-1). No excess above the Standard Model background expectation is observed. Gluino masses below 860 GeV and squark masses below 1320 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino, for squark or gluino masses below 2 TeV, respectively. Squarks and gluinos with equal masses below 1410 GeV are excluded. In minimal supergravity/constrained minimal supersymmetric Standard Model models with tan beta = 10, A(0) = 0 and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1360 GeV. Constraints are also placed on the parameter space of supersymmetric models with compressed spectra. These limits considerably extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
Resumo:
A search for squarks and gluinos in final states containing high-pT jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √s = 8TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850GeV (440GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A0 = −2m0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
Resumo:
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 fb −1 of proton-proton collisions delivered by the Large Hadron Collider at s √ =8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a Z boson. No significant deviations are observed in data from standard model predictions and results are used to set upper limits on the event yields from processes beyond the standard model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R -parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 and 750 GeV are placed on gluino and chargino masses, respectively. In R -parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
Resumo:
Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb−1 of proton-proton collision data at ps = 8TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model.
Resumo:
In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP-nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP-nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, we find that the amount of isospin violation may be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon matrix elements and the associated hadronic uncertainties. This becomes especially relevant once the increased sensitivity of future direct-detection experiments corners the MSSM into these regions of parameter space.
Resumo:
The Pulmonary Embolism Severity Index (PESI) is a validated clinical prognostic model for patients with pulmonary embolism (PE). Recently, a simplified version of the PESI was developed. We sought to compare the prognostic performance of the original and simplified PESI. Using data from 15,531 patients with PE, we compared the proportions of patients classified as low versus higher risk between the original and simplified PESI and estimated 30-day mortality within each risk group. To assess the models' accuracy to predict mortality, we calculated sensitivity, specificity, and predictive values and likelihood ratios for low- versus higher-risk patients. We also compared the models' discriminative power by calculating the area under the receiver-operating characteristic curve. The overall 30-day mortality was 9.3%. The original PESI classified a significantly greater proportion of patients as low-risk than the simplified PESI (40.9% vs. 36.8%; p<0.001). Low-risk patients based on the original and simplified PESI had a mortality of 2.3% and 2.7%, respectively. The original and simplified PESI had similar sensitivities (90% vs. 89%), negative predictive values (98% vs. 97%), and negative likelihood ratios (0.23 vs. 0.28) for predicting mortality. The original PESI had a significantly greater discriminatory power than the simplified PESI (area under the ROC curve 0.78 [95% CI: 0.77-0.79] vs. 0.72 [95% CI: 0.71-0.74]; p<0.001). In conclusion, even though the simplified PESI accurately identified patients at low-risk of adverse outcomes, the original PESI classified a higher proportion of patients as low-risk and had a greater discriminatory power than the simplified PESI.
Resumo:
This study aimed to assess the performance of two prognostic models-the European Society of Cardiology (ESC) model and the simplified Pulmonary Embolism Severity Index (sPESI)-in predicting short-term mortality in patients with pulmonary embolism (PE).
Resumo:
Despite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass-radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that the global models will in future undergo significant modifications. Despite these limitations, global models can already now yield many testable predictions. With future global models addressing the geophysical characteristics of the synthetic planets, it should eventually become possible to make predictions about the habitability of planets based on their formation and evolution.