7 resultados para Si-based polymer film
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES The aim of this study was to compare the efficacy of amphilimus-eluting stents (AES) with that of everolimus-eluting stents (EES) in patients with diabetes mellitus (DM). BACKGROUND The AES is a polymer-free drug-eluting stent that elutes sirolimus formulated with an amphiphilic carrier from laser-dug wells. This technology could be associated with a high efficacy in patients with DM. METHODS This was a multicenter, randomized, noninferiority trial. Patients with DM medically treated with oral glucose-lowering agents or insulin and de novo coronary lesions were randomized in a 1:1 fashion to AES or EES. The primary endpoint was the neointimal (NI) volume obstruction assessed by optical coherence tomography at 9-month follow-up. RESULTS A total of 116 lesions in 112 patients were randomized. Overall, 40% were insulin-treated patients, with a median HbA1c of 7.3% (interquartile range: 6.7% to 8.0%). The primary endpoint, NI volume obstruction, was 11.97 ± 5.94% for AES versus 16.11 ± 18.18% for EES, meeting the noninferiority criteria (p = 0.0003). Pre-specified subgroup analyses showed a significant interaction between stent type and glycemic control (p = 0.02), with a significant reduction in NI hyperplasia in the AES group in patients with the higher HbA1c (p = 0.03). By quantitative coronary angiography, in-stent late loss was 0.14 ± 0.24 for AES versus 0.24 ± 0.57 mm for EES (p = 0.27), with a larger minimal lumen diameter at follow-up for AES (p = 0.02), mainly driven by 2 cases of occlusive restenosis in the EES group. CONCLUSIONS AES are noninferior to EES for the coronary revascularization of patients with DM. These results suggest a high efficacy of the AES and may support the potential benefit of this stent in patients with DM. (A Randomized Comparison of Reservoir-Based Polymer-Free Amphilimus-Eluting Stents Versus Everolimus-Eluting Stents With Durable Polymer in Patients With Diabetes Mellitus [RESERVOIR]; NCT01710748).
Resumo:
The use of rotating ring–disk electrodes as generator-collector systems has so far been limited to the detection of Faradaic currents at the ring. As opposed to other generator-collector configurations, non-Faradaic detection has not yet been carried out with rotating ring–disk electrodes. In this study, a.c. perturbation based detection for measurement of the ring impedance is introduced. By using a conducting polymer-modified disk electrode in combination with a bare gold ring as a model, it is shown that the measured ring capacitance correlates with the polarization of the polymer film, most probably due to counter-ion exchange. A method of calculating the ring capacitance based on a small-signal sinusoid perturbation is described and the most important instrumental limitations are identified.
Resumo:
The impact of polymer modification on the physical properties of cementitious mortars is investigated using a multimethod approach. Special emphasis is put on the identification and quantification of different polymer components within the cementitious matrix. With respect to thin-bed applications, particularly tile adhesives, the spatial distributions of latex, cellulose ether (CE), polyvinyl alcohol (PVA), and cement hydration products can be quantified. It is shown that capillary forces and evaporation induce water fluxes in the interconnected part of the pore system, which transport CE, PVA, and cement ions to the mortar interfaces. In contrast, the distribution of latex remains homogeneous. In combination with results from qualitative experiments, the quantitative findings allow reconstruction of the evolution from fresh to hardened mortar, including polymer film formation, cement hydration, and water migration. The resulting microstructure and the failure modes can be correlated with the final adhesive strength of the tile adhesive. The results demonstrate that skinning prior to tile inlaying can strongly reduce wetting properties of the fresh mortar and lower final adhesive strength.
Resumo:
Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.
Resumo:
Benzodifuran-functionalised pyrene and anthracene fluorophores 1 and 2 were obtained in reasonable yields. Their single crystal structures, electrochemical, optical absorption, and fluorescence characteristics have been described. They show strong luminescence with high quantum yields of 0.53 for 1 and 0.48 for 2. Magnetic measurements for the 2D coordination polymer [Mn(Pht(Pyz(H2O)2]n (1), in which metal centres are linked together by pyrazine (Pyz) and 1,6-bridging o-phthalate ligand (Pht2-), revealed antiferromagnetic interactions between Mn(II) ions.
Resumo:
OBJECTIVES This study sought to report the final 5 years follow-up of the landmark LEADERS (Limus Eluted From A Durable Versus ERodable Stent Coating) trial. BACKGROUND The LEADERS trial is the first randomized study to evaluate biodegradable polymer-based drug-eluting stents (DES) against durable polymer DES. METHODS The LEADERS trial was a 10-center, assessor-blind, noninferiority, "all-comers" trial (N = 1,707). All patients were centrally randomized to treatment with either biodegradable polymer biolimus-eluting stents (BES) (n = 857) or durable polymer sirolimus-eluting stents (SES) (n = 850). The primary endpoint was a composite of cardiac death, myocardial infarction (MI), or clinically indicated target vessel revascularization within 9 months. Secondary endpoints included extending the primary endpoint to 5 years and stent thrombosis (ST) (Academic Research Consortium definition). Analysis was by intention to treat. RESULTS At 5 years, the BES was noninferior to SES for the primary endpoint (186 [22.3%] vs. 216 [26.1%], rate ratio [RR]: 0.83 [95% confidence interval (CI): 0.68 to 1.02], p for noninferiority <0.0001, p for superiority = 0.069). The BES was associated with a significant reduction in the more comprehensive patient-orientated composite endpoint of all-cause death, any MI, and all-cause revascularization (297 [35.1%] vs. 339 [40.4%], RR: 0.84 [95% CI: 0.71 to 0.98], p for superiority = 0.023). A significant reduction in very late definite ST from 1 to 5 years was evident with the BES (n = 5 [0.7%] vs. n = 19 [2.5%], RR: 0.26 [95% CI: 0.10 to 0.68], p = 0.003), corresponding to a significant reduction in ST-associated clinical events (primary endpoint) over the same time period (n = 3 of 749 vs. n = 14 of 738, RR: 0.20 [95% CI: 0.06 to 0.71], p = 0.005). CONCLUSIONS The safety benefit of the biodegradable polymer BES, compared with the durable polymer SES, was related to a significant reduction in very late ST (>1 year) and associated composite clinical outcomes. (Limus Eluted From A Durable Versus ERodable Stent Coating [LEADERS] trial; NCT00389220).