9 resultados para Shoring and underpinning.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
Previous studies have suggested that polymorphism in the serotonin transporter gene (5-HTTLPR) influences responses to serotonergic manipulation, with opposite effects in patients recovered from depression (rMDD) and controls. Here we sought to clarify the neurocognitive mechanisms underpinning these surprising results. Twenty controls and 23 rMDD subjects completed the study; functional magnetic resonance imaging (fMRI) and genotype data were available for 17 rMDD subjects and 16 controls. Following tryptophan or sham depletion, subjects performed an emotional-processing task during fMRI. Although no genotype effects on mood were identified, significant genotype(∗)diagnosis(∗)depletion interactions were observed in the hippocampus and subgenual cingulate in response to emotionally valenced words. In both regions, tryptophan depletion increased responses to negative words, relative to positive words, in high-expression controls, previously identified as being at low-risk for mood change following this procedure. By contrast, in higher-risk low-expression controls and high-expression rMDD subjects, tryptophan depletion had the opposite effect. Increased neural responses to negative words following tryptophan depletion may reflect an adaptive mechanism promoting resilience to mood change following perturbation of the serotonin system, which is reversed in sub-groups vulnerable to developing depressive symptoms. However, this interpretation is complicated by our failure to replicate previous findings of increased negative mood following tryptophan depletion.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
Striated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs. empty plasmid-transfected contralateral controls. Muscle fibre-targeted over-expression of FAK in anti-gravitational muscle for 9 days up-regulated transcript levels of gene ontologies underpinning mitochondrial metabolism and contraction in the transfected belly portion. Concomitantly, mRNA expression of the major fast-type myosin heavy chain (MHC) isoform, MHC2A, was reduced. The promotion of the slow-oxidative expression programme by FAK was abolished after co-expression of the FAK inhibitor FAK-related non-kinase (FRNK). Elevated protein content of MHC1 (+9%) and proteins of mitochondrial respiration (+165-610%) with FAK overexpression demonstrated the translation of transcript differentiation in targeted muscle fibres towards a slow-oxidative muscle phenotype. Coincidentally MHC2A protein was reduced by 50% due to protection of muscle from de-differentiation with electrotransfer. Fibre cross section in FAK-transfected muscle was elevated by 6%. The FAK-modulated muscle transcriptome was load-dependent and regulated in correspondence to tyrosine 397 phosphorylation of FAK. In the context of overload, the FAK-induced gene expression became manifest at the level of contraction by a slow transformation and the re-establishment of normal muscle force from the lowered levels with transfection. These results highlight the analytic power of a systematic somatic transgene approach by mapping a role of FAK in the dominant mechano-regulation of muscular motor performance via control of gene expression.
Resumo:
Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endothelin-1 bioavailability, and overactivation of the sympathetic nervous system in causing exaggerated hypoxic pulmonary hypertension in humans. Based on these studies, drugs that increase NO bioavailability, attenuate endothelin-1 induced pulmonary vasoconstriction, or prevent exaggerated sympathetic activation have been shown to be useful for the treatment/prevention of exaggerated pulmonary hypertension during acute short-term high altitude exposure. The mechanisms underpinning chronic pulmonary hypertension in high altitude dwellers are less well understood, but recent evidence suggests that they differ in some aspects from those involved in short-term adaptation to high altitude. These differences have consequences for the choice of the treatment for chronic pulmonary hypertension at high altitude. Finally, recent data indicate that fetal programming of pulmonary vascular dysfunction in offspring of preeclampsia and children generated by assisted reproductive technologies represents a novel and frequent cause of pulmonary hypertension at high altitude. In animal models of fetal programming of hypoxic pulmonary hypertension, epigenetic mechanisms play a role, and targeting of these mechanisms with drugs lowers pulmonary artery pressure. If epigenetic mechanisms also are operational in the fetal programming of pulmonary vascular dysfunction in humans, such drugs may become novel tools for the treatment of hypoxic pulmonary hypertension.
Resumo:
Traditionally, critical swimming speed has been defined as the speed when a fish can no longer propel itself forward, and is exhausted. To gain a better understanding of the metabolic processes at work during a U(crit) swim test, and that lead to fatigue, we developed a method using in vivo (31)P-NMR spectroscopy in combination with a Brett-type swim tunnel. Our data showed that a metabolic transition point is reached when the fish change from using steady state aerobic metabolism to non-steady state anaerobic metabolism, as indicated by a significant increase in inorganic phosphate levels from 0.3+/-0.3 to 9.5+/-3.4 mol g(-1), and a drop in intracellular pH from 7.48+/-0.03 to 6.81+/-0.05 in muscle. This coincides with the point when the fish change gait from subcarangiform swimming to kick-and-glide bursts. As the number of kicks increased, so too did the Pi concentration, and the pH(i) dropped. Both changes were maximal at U(crit). A significant drop in Gibbs free energy change of ATP hydrolysis from -55.6+/-1.4 to -49.8+/-0.7 kJ mol(-1) is argued to have been involved in fatigue. This confirms earlier findings that the traditional definition of U(crit), unlike other critical points that are typically marked by a transition from aerobic to anaerobic metabolism, is the point of complete exhaustion of both aerobic and anaerobic resources.
Resumo:
Purpose This paper aims to provide conceptual clarity by distinguishing self‐initiated expatriates (SIEs) from company‐assigned expatriates (AEs), and skilled migrants; most importantly, it introduces an overarching conceptual framework based on career capital theory to explain SIEs’ career success. Design/methodology/approach This conceptual framework is based on a review of the relevant literature on SIE, expatriation, career studies, cross‐cultural studies, migration, and other related areas. Findings Protean career attitude, career networks, and cultural intelligence are identified as three major types of career capital influencing SIEs career success positively; the predicting relationships between these are mediated by cultural adjustment in the host country. Cultural distance acts as the moderator, which highlights the influence of macro‐contextual factors on SIEs’ career development. Research limitations/implications The current paper applied career capital theory and did not integrate the impact of family and labour market situation on SIEs’ career development. Further research should test the proposed framework empirically, and integrate the impact of family‐ and career‐related factors into a holistic approach. Practical implications When constructing international talent acquisition and retention strategies, organizations and receiving countries should understand the different career development needs and provide SIEs with opportunities to increase career capital during expatriation. Furthermore, the current framework suggests how to adjust to the host country in order to meet career development goals. Originality/value The multi‐level and sequential framework adds value by identifying specific types of career capital for SIEs and providing a conceptual underpinning for explaining how they interact and foster SIEs’ career success. Moreover, the framework embraces SIEs from both developed and developing economies.
Resumo:
Excess body adiposity, commonly expressed as body mass index (BMI), is a risk factor for many common adult cancers. Over the past decade, epidemiological data have shown that adiposity-cancer risk associations are specific for gender, site, geographical population, histological subtype and molecular phenotype. The biological mechanisms underpinning these associations are incompletely understood but need to take account of the specificities observed in epidemiology to better inform future prevention strategies.