8 resultados para Sheet metal production

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935–1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980. We show that Zn primarily emitted from the Zn production in Ust-Kamenogorsk (East Kazakhstan) dominated the SU heavy metal emission. Cd, Sb, Zn (Cu) emissions increased between 1935 and the 1970s (1980s) due to expanded non-ferrous metal production. Emissions of the four metals in the beginning of the 1990s were as low as in the 1950s, which we attribute to the economic downturn in industry, changes in technology for an increasing metal recovery from ores, the replacement of coal and oil by gas, and air pollution control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since precolonial times has caused substantial emissions of neurotoxic lead (Pb) into the atmosphere; however, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. We present a comprehensive Pb emission history for the last two millennia for South America, based on a continuous, high-resolution, ice core record from Illimani glacier. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Andean Altiplano. The ice core Pb deposition history revealed enhanced Pb enrichment factors (EFs) due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450–950), the Inca empires (AD 1450–1532), colonial times (AD 1532–1900), and tin production at the beginning of the 20th century. After the 1960s, Pb EFs increased by a factor of 3 compared to the emission level from metal production, which we attribute to gasoline-related Pb emissions. Our results show that anthropogenic Pb pollution levels from road traffic in South America exceed those of any historical metallurgy in the last two millennia, even in regions with exceptional high local metallurgical activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl-36Ar cosmic-ray exposure (CRE) ages, which are shielding-independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl-36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By investigating the effect of 104,105Mo beta-decay on the formation of 104,105Tc carbonyl complex, we estimated the lower reaction time limit for the metal carbonyl synthesis in the gas phase to be more than 100 ms. We examined further the influence of the wall material of the recoil chamber, the carrier gas composition, the gas flow rate, and the pressure on the production yield of 104Mo(CO)6, so that the future stability tests with Sg(CO)6 can be optimized accordingly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a μ -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of ∼8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy.