74 resultados para Shear (Mechanics)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.
Resumo:
Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.
Resumo:
ADAMTS1 inhibits capillary sprouting, and since capillary sprouts do not experience the shear stress caused by blood flow, this study undertook to clarify the relationship between shear stress and ADAMTS1. It was found that endothelial cells exposed to shear stress displayed a strong upregulation of ADAMTS1, dependent upon both the magnitude and duration of their exposure. Investigation of the underlying pathways demonstrated involvement of phospholipase C, phosphoinositide 3-kinase, and nitric oxide. Forkhead box protein O1 was identified as a likely inhibitor of the system, as its knockdown was followed by a slight increase in ADAMTS1 expression. In silico prediction displayed a transcriptional binding site for Forkhead box protein O1 in the promotor region of the ADAMTS1 gene, as well as sites for nuclear factor 1, SP1, and AP-1. The anti-angiogenic effects of ADAMTS1 were attributed to its cleavage of thrombospondin 1 into a 70-kDa fragment, and a significant enhancement of this fragment was indeed demonstrated by immunoblotting shear stress-treated cells. Accordingly, scratch wound closure displayed a slowdown in conditioned medium from shear stress-treated endothelial cells, an effect that could be completely blocked by a knockdown of thrombospondin 1 and partially blocked by a knockdown of ADAMTS1. Non-perfused capillary sprouts in rat mesenteries stained negative for ADAMTS1, while vessels in the microcirculation that had already experienced blood flow yielded the opposite results. The shear stress-dependent expression of ADAMTS1 in vitro was therefore also demonstrated in vivo and thereby confirmed as a mechanism connecting blood flow with the regulation of angiogenesis.
Resumo:
Cerclages regain interest due to a rising number of periprosthetic fractures. The contact distribution at the circumferential cerclage-bone interface is still unknown. Local interface pressure depends on the amount of contact area. Cortical damage at the interface would provoke cerclage loosening. Therefore, the contact area, the bone pressure along the interface and the cortical resistance underneath loaded cerclages were determined in an ex vivo model.