34 resultados para Shape Design Optimization
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method may enhance the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The computational method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. The method automatically derives the mandibular angle and the bone thickness and intensity values at the path of every screw from a set of computed tomography images. An optimization strategy is then used to optimize the two parameters of plate angle and screw position. The method was applied to two populations of different genders. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate (MODUS(®) TriLock(®) 2.0/2.3/2.5, Medartis AG, Basel, Switzerland). The proposed designs resulted in a statistically significant improvement in the available bone thickness when compared to the standard plate. There is a higher probability that the proposed implants cover areas of thicker cortical bone without compromising the bone mineral density around the screws. The obtained results allowed us to conclude that an angle and screw separation of 129° and 9 mm for females and 121° and 10 mm for males are more suitable designs than the commercially available 120° and 9 mm.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
In this paper we present a new population-based method for the design of bone fixation plates. Standard pre-contoured plates are designed based on the mean shape of a certain population. We propose a computational process to design implants while reducing the amount of required intra-operative shaping, thus reducing the mechanical stresses applied to the plate. A bending and torsion model was used to measure and minimize the necessary intra-operative deformation. The method was applied and validated on a population of 200 femurs that was further augmented with a statistical shape model. The obtained results showed substantial reduction in the bending and torsion needed to shape the new design into any bone in the population when compared to the standard mean-based plates.
Resumo:
The widespread use of artificial nestboxes has led to significant advances in our knowledge of the ecology, behaviour and physiology of cavity nesting birds, especially small passerines Nestboxes have made it easier to perform routine monitoring and experimental manipulation of eggs or nestlings, and also repeatedly to capture, identify and manipulate the parents However, when comparing results across study sites the use of nestboxes may also Introduce a potentially significant confounding variable in the form of differences in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are constructed and maintained However, the use of nestboxes may also introduce an unconsidered and potentially significant confounding variable clue to differences in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are constructed and maintained Here we review to what extent the characteristics of artificial nestboxes (e g size, shape, construction material, colour) are documented in the 'methods' sections of publications involving hole-nesting passerine birds using natural or excavated cavities or artificial nestboxes for reproduction and roosting Despite explicit previous recommendations that authors describe in detail the characteristics of the nestboxes used, we found that the description of nestbox characteristics in most recent publications remains poor and insufficient We therefore list the types of descriptive data that should be included in the methods sections of relevant manuscripts and justify this by discussing how variation in nestbox characteristics can affect or confound conclusions from nestbox studies We also propose several recommendations to improve the reliability and usefulness of research based on long-term studies of any secondary hole-nesting species using artificial nestboxes for breeding or roosting.
Resumo:
Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database. 48 Caucasian and Asian bone models (left and right) from the database were used for the preliminary optimization process and validation of the fibula plate. The implant was constructed to fit bilaterally in a lateral position of the fibula. Then a biomechanical comparison of the designed implant to the current gold standard in the treatment of distal fibular fractures (locking 1/3 tubular plate) was conducted. Finally, a clinical surveillance study to evaluate the grade of implant fit achieved was performed. The results showed that with a virtual anatomic database it was possible to design a fibula plate with an optimized fit for a large proportion of the population. Biomechanical testing showed the novel fibula plate to be superior to 1/3 tubular plates in 4-point bending tests. The clinical application showed a very high degree of primary implant fit. Only in a small minority of cases further intra-operative implant bending was necessary. Therefore, the goal to develop an implant for the treatment of distal fibular fractures based on the evidence of a large anatomical database could be attained. Biomechanical testing showed good results regarding the stability and the clinical application confirmed the high grade of anatomical fit.
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method enhances the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. Using computational anatomy techniques, the method automatically derives, from a set of computed tomography images, the mandibular angle and the bone thickness and intensity values at the path of every screw. An optimisation strategy is then used to optimise the two parameters of plate angle and screw position. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate. A statistically highly significant improvement was observed. Our experiments allowed us to conclude that an angle of 126° and a screw separation of 8mm is a more suitable design than the standard 120° and 9mm.
Resumo:
The quantification of the structural properties of snow is traditionally based on model-based stereology. Model-based stereology requires assumptions about the shape of the investigated structure. Here, we show how the density, specific surface area, and grain boundary area can be measured using a design-based method, where no assumptions about structural properties are necessary. The stereological results were also compared to X-ray tomography to control the accuracy of the method. The specific surface area calculated with the stereological method was 19.8 ± 12.3% smaller than with X-ray tomography. For the density, the stereological method gave results that were 11.7 ± 12.1% larger than X-ray tomography. The statistical analysis of the estimates confirmed that the stereological method and the sampling used are accurate. This stereological method was successfully tested on artificially produced ice beads but also on several snow types. Combining stereology and polarisation microscopy provides a good estimate of grain boundary areas in ice beads and in natural snow, with some limitatio
Resumo:
OBJECTIVE: To generate anatomical data on the human middle ear and adjacent structures to serve as a base for the development and optimization of new implantable hearing aid transducers. Implantable middle ear hearing aid transducers, i.e. the equivalent to the loudspeaker in conventional hearing aids, should ideally fit into the majority of adult middle ears and should utilize the limited space optimally to achieve sufficiently high maximal output levels. For several designs, more anatomical data are needed. METHODS: Twenty temporal bones of 10 formalin-fixed adult human heads were scanned by a computed tomography system (CT) using a slide thickness of 0.63 mm. Twelve landmarks were defined and 24 different distances were calculated for each temporal bone. RESULTS: A statistical description of 24 distances in the adult human middle ear which may limit or influence the design of middle ear transducers is presented. Significant inter-individual differences but no significant differences for gender, side, age or degree of pneumatization of the mastoid were found. Distances, which were not analyzed for the first time in this study, were found to be in good agreement with the results of earlier studies. CONCLUSION: A data set describing the adult human middle ear anatomy quantitatively from the point of view of designers of new implantable hearing aid transducers has been generated. In principle, the method employed in this study using standard CT scans could also be used preoperatively to rule out exclusion criteria.
Resumo:
Tissue engineering strategies are gathering clinical momentum in regenerative medicine and are expected to provide excellent opportunities for therapy for difficult-to-treat human pathologies. Being aware of the requirement to produce larger artificial tissue implants for clinical applications, we used microtissues, produced using gravity-enforced self-assembly of monodispersed primary cells, as minimal tissue units to generate scaffold-free vascularized artificial macrotissues in custom-shaped agarose molds. Mouse myoblast, pig and human articular-derived chondrocytes, and human myofibroblast (HMF)-composed microtissues (microm3 scale) were amalgamated to form coherent macrotissue patches (mm3 scale) of a desired shape. Macrotissues, assembled from the human umbilical vein endothelial cell (HUVEC)-coated HMF microtissues, developed a vascular system, which functionally connected to the chicken embryo's vasculature after implantation. The design of scaffold-free vascularized macrotissues is a first step toward the scale-up and production of artificial tissue implants for future tissue engineering initiatives.