3 resultados para Set functions.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
We introduce a version of operational set theory, OST−, without a choice operation, which has a machinery for Δ0Δ0 separation based on truth functions and the separation operator, and a new kind of applicative set theory, so-called weak explicit set theory WEST, based on Gödel operations. We show that both the theories and Kripke–Platek set theory KPKP with infinity are pairwise Π1Π1 equivalent. We also show analogous assertions for subtheories with ∈-induction restricted in various ways and for supertheories extended by powerset, beta, limit and Mahlo operations. Whereas the upper bound is given by a refinement of inductive definition in KPKP, the lower bound is by a combination, in a specific way, of realisability, (intuitionistic) forcing and negative interpretations. Thus, despite interpretability between classical theories, we make “a detour via intuitionistic theories”. The combined interpretation, seen as a model construction in the sense of Visser's miniature model theory, is a new way of construction for classical theories and could be said the third kind of model construction ever used which is non-trivial on the logical connective level, after generic extension à la Cohen and Krivine's classical realisability model.
Resumo:
Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in √sNN=2.76 TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb−1. Jets were reconstructed using the anti-kt algorithm with distance parameter values R = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for R=0.4 jets with pjetT>100 GeV. Commensurate minimum pT values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate z values, 0.04≲z≲0.2 and an enhancement in fragment yield for z≲0.04. A smaller, less significant enhancement is observed at large z and large pT in central collisions.