4 resultados para Service description language
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The understanding of lumbar spine pathologies made substantial progress at the turn of the twentieth century. The authors review the original publication of Otto Veraguth in 1929 reporting on the successful resection of a herniated lumbar disc, published exclusively in the German language. His early report is put into the historical context, and its impact on the understanding of pathologies of the intervertebral disc (IVD) is estimated. The Swiss surgeon and Nobel Prize laureate Emil Theodor Kocher was among the first physicians to describe the traumatic rupture of the IVD in 1896. As early as 1909 Oppenheim and Krause published 2 case reports on surgery for a herniated lumbar disc. Goldthwait was the first physician to delineate the etiopathogenes is between annulus rupture, symptoms of sciatica, and neurological signs in his publication of 1911. Further publications by Middleton and Teacher in 1911 and Schmorl in 1929 added to the understanding of lumbar spinal pathologies. In 1929, the Swiss neurologist Veraguth (surgery performed by Hans Brun) and the American neurosurgeon Walter Edward Dandy both published their early experiences with the surgical therapy of a herniated lumbar disc. Veraguth's contribution, however, has not been appreciated internationally to date. The causal relationship between lumbar disc pathology and sciatica remained uncertain for some years to come. The causal relationship was not confirmed until Mixter and Barr's landmark paper in 1934 describing the association of sciatica and lumbar disc herniation, after which the surgical treatment became increasingly popular. Veraguth was among the first physicians to report on the clinical course of a patient with successful resection of a herniated lumbar disc. His observations should be acknowledged in view of the limited experience and literature on this ailment at that time.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (patarashca, a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.
Resumo:
Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.