4 resultados para Sequential Gaussian simulation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, a lot of effort has been spent in the efficient computation of kriging predictors when observations are assimilated sequentially. In particular, kriging update formulae enabling significant computational savings were derived. Taking advantage of the previous kriging mean and variance computations helps avoiding a costly matrix inversion when adding one observation to the TeX already available ones. In addition to traditional update formulae taking into account a single new observation, Emery (2009) proposed formulae for the batch-sequential case, i.e. when TeX new observations are simultaneously assimilated. However, the kriging variance and covariance formulae given in Emery (2009) for the batch-sequential case are not correct. In this paper, we fix this issue and establish correct expressions for updated kriging variances and covariances when assimilating observations in parallel. An application in sequential conditional simulation finally shows that coupling update and residual substitution approaches may enable significant speed-ups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaussian random field (GRF) conditional simulation is a key ingredient in many spatial statistics problems for computing Monte-Carlo estimators and quantifying uncertainties on non-linear functionals of GRFs conditional on data. Conditional simulations are known to often be computer intensive, especially when appealing to matrix decomposition approaches with a large number of simulation points. This work studies settings where conditioning observations are assimilated batch sequentially, with one point or a batch of points at each stage. Assuming that conditional simulations have been performed at a previous stage, the goal is to take advantage of already available sample paths and by-products to produce updated conditional simulations at mini- mal cost. Explicit formulae are provided, which allow updating an ensemble of sample paths conditioned on n ≥ 0 observations to an ensemble conditioned on n + q observations, for arbitrary q ≥ 1. Compared to direct approaches, the proposed formulae proveto substantially reduce computational complexity. Moreover, these formulae explicitly exhibit how the q new observations are updating the old sample paths. Detailed complexity calculations highlighting the benefits of this approach with respect to state-of-the-art algorithms are provided and are complemented by numerical experiments.