5 resultados para Seppälä, Risto
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
AIMS The purpose of this study was to identify novel genetic variants influencing circulating asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels and to evaluate whether they have a prognostic value on cardiovascular mortality. METHODS AND RESULTS We conducted a genome-wide association study on the methylarginine traits and investigated the predictive value of the new discovered variants on mortality. Our meta-analyses replicated the previously known locus for ADMA levels in DDAH1 (rs997251; P = 1.4 × 10(-40)), identified two non-synomyous polymorphisms for SDMA levels in AGXT2 (rs37369; P = 1.4 × 10(-40) and rs16899974; P = 1.5 × 10(-38)) and one in SLC25A45 (rs34400381; P = 2.5 × 10(-10)). We also fine-mapped the AGXT2 locus for further independent association signals. The two non-synonymous AGXT2 variants independently associated with SDMA levels were also significantly related with short-term heart rate variability (HRV) indices in young adults. The major allele (C) of the novel non-synonymous rs16899974 (V498L) variant associated with decreased SDMA levels and an increase in the ratio between the low- and high-frequency spectral components of HRV (P = 0.00047). Furthermore, the SDMA decreasing allele (G) of the non-synomyous SLC25A45 (R285C) variant was associated with a lower resting mean heart rate during the HRV measurements (P = 0.0046), but not with the HRV indices. None of the studied genome-wide significant variants had any major effect on cardiovascular or total mortality in patients referred for coronary angiography. CONCLUSIONS AGXT2 has an important role in SDMA metabolism in humans. AGXT2 may additionally have an unanticipated role in the autonomic nervous system regulation of cardiac function.
Resumo:
In this paper, we propose a new method for stitching multiple fluoroscopic images taken by a C-arm instrument. We employ an X-ray radiolucent ruler with numbered graduations while acquiring the images, and the image stitching is based on detecting and matching ruler parts in the images to the corresponding parts of a virtual ruler. To achieve this goal, we first detect the regular spaced graduations on the ruler and the numbers. After graduation labeling, for each image, we have the location and the associated number for every graduation on the ruler. Then, we initialize the panoramic X-ray image with the virtual ruler, and we “paste” each image by aligning the detected ruler part on the original image, to the corresponding part of the virtual ruler on the panoramic image. Our method is based on ruler matching but without the requirement of matching similar feature points in pairwise images, and thus, we do not necessarily require overlap between the images. We tested our method on eight different datasets of X-ray images, including long bones and a complete spine. Qualitative and quantitative experiments show that our method achieves good results.
Resumo:
Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.