30 resultados para Sensory-motor development
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Estrogens are known to play a role in both reproductive and non-reproductive functions in mammals. Estrogens and their receptors are involved in the development of the central nervous system (brain development, neuronal survival and differentiation) as well as in the development of the peripheral nervous system (sensory-motor behaviors). In order to decipher possible functions of estrogens in early development of the zebrafish sensory system, we investigated the role of estrogen receptor beta(2) (ERbeta(2)) by using a morpholino (MO) approach blocking erbeta(2) RNA translation. We further investigated the development of lateral line organs by cell-specific labeling, which revealed a disrupted development of neuromasts in morphants. The supporting cells developed and migrated normally. Sensory hair cells, however, were absent in morphants' neuromasts. Microarray analysis and subsequent in situ hybridizations indicated an aberrant activation of the Notch signaling pathway in ERbeta(2) morphants. We conclude that signaling via ERbeta(2) is essential for hair cell development and may involve an interaction with the Notch signaling pathway during cell fate decision in the neuromast maturation process.
Resumo:
The paper argues for a distinction between sensory-and conceptual-information storage in the human information-processing system. Conceptual information is characterized as meaningful and symbolic, while sensory information may exist in modality-bound form. Furthermore, it is assumed that sensory information does not contribute to conscious remembering and can be used only in data-driven process reptitions, which can be accompanied by a kind of vague or intuitive feeling. Accordingly, pure top-down and willingly controlled processing, such as free recall, should not have any access to sensory data. Empirical results from different research areas and from two experiments conducted by the authors are presented in this article to support these theoretical distinctions. The experiments were designed to separate a sensory-motor and a conceptual component in memory for two-digit numbers and two-letter items, when parts of the numbers or items were imaged or drawn on a tablet. The results of free recall and recognition are discussed in a theoretical framework which distinguishes sensory and conceptual information in memory.
Resumo:
Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link.
Resumo:
An interdisciplinary European group of clinical experts in the field of movement disorders and experienced Botulinum toxin users has updated the consensus for the use of Botulinum toxin in the treatment of children with cerebral palsy (CP). A problem-orientated approach was used focussing on both published and practice-based evidence. In part I of the consensus the authors have tabulated the supporting evidence to produce a concise but comprehensive information base, pooling data and experience from 36 institutions in 9 European countries which involves more than 10,000 patients and over 45,000 treatment sessions during a period of more than 280 treatment years. In part II of the consensus the Gross Motor Function Measure (GMFM) and Gross Motor Function Classification System (GMFCS) based Motor Development Curves have been expanded to provide a graphical framework on how to treat the motor disorders in children with CP. This graph is named "CP(Graph) Treatment Modalities - Gross Motor Function" and is intended to facilitate communication between parents, therapists and medical doctors concerning (1) achievable motor function, (2) realistic goal-setting and (3) treatment perspectives for children with CP. The updated European consensus 2009 summarises the current understanding regarding an integrated, multidisciplinary treatment approach using Botulinum toxin for the treatment of children with CP.
Resumo:
The purpose of this study was to evaluate the anti-nociceptive activity of ketamine and isoflurane in horses using a limb withdrawal reflex (WR) model. Single and repeated stimulations were applied to the digital nerve of the left forelimb in ponies anaesthetised with isoflurane before, during and after intravenous administration of racemic ketamine. Surface electromyographic activity was recorded from the deltoid muscle. Higher stimulation intensity was required to evoke a reflex during ketamine administration. Furthermore, the amplitudes of response to stimulations were significantly and dose-dependently depressed and a flattening of the stimulus-response curves was observed. The reflex activity recovered partially once the ketamine infusion finished. The results demonstrated that the limb WR can be used to quantify the temporal effect of ketamine on the sensory-motor processing in ponies anaesthetised with isoflurane.
Resumo:
The aim of this study was to quantify the effects of isoflurane at approximately the minimum alveolar concentration (peri-MAC) on the temporal summation (TS) of reflex activity in ponies. TS was evoked by repeated electrical stimulations applied at 5 Hz for 2 s on the digital nerve of the left forelimb of seven ponies. Surface electromyographic activity was recorded from the deltoid and common digital extensor muscles. TS thresholds and amplitude of response to stimulations of increasing intensities were assessed during anaesthesia at 0.85, 0.95 and 1.05 times the individual MAC, and after anaesthesia in standing animals. Under isoflurane anaesthesia, TS thresholds increased significantly in a concentration-dependent fashion and at each isoflurane MAC, the responses increased significantly for increasing stimulation intensities. A concentration-dependent depression of evoked reflexes with a reduction in the slopes of the stimulus-response function was observed for both muscles. The results demonstrated that with this model it is possible to describe and quantify the effects of anaesthetics on spinal sensory-motor processing in ponies.
Resumo:
OBJECTIVE: To investigate effects of isoflurane at approximately the minimum alveolar concentration (MAC) on the nociceptive withdrawal reflex (NWR) of the forelimb of ponies as a method for quantifying anesthetic potency. ANIMALS: 7 healthy adult Shetland ponies. PROCEDURE: Individual MAC (iMAC) for isoflurane was determined for each pony. Then, effects of isoflurane administered at 0.85, 0.95, and 1.05 iMAC on the NWR were assessed. At each concentration, the NWR threshold was defined electromyographically for the common digital extensor and deltoid muscles by stimulating the digital nerve; additional electrical stimulations (3, 5, 10, 20, 30, and 40 mA) were delivered, and the evoked activity was recorded and analyzed. After the end of anesthesia, the NWR threshold was assessed in standing ponies. RESULTS: Mean +/- SD MAC of isoflurane was 1.0 +/- 0.2%. The NWR thresholds for both muscles increased significantly in a concentration-dependent manner during anesthesia, whereas they decreased in awake ponies. Significantly higher thresholds were found for the deltoid muscle, compared with thresholds for the common digital extensor muscle, in anesthetized ponies. At each iMAC tested, amplitudes of the reflex responses from both muscles increased as stimulus intensities increased from 3 to 40 mA. A concentration-dependent depression of evoked reflexes with reduction in slopes of the stimulus-response functions was detected. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthetic-induced changes in sensory-motor processing in ponies anesthetized with isoflurane at concentrations of approximately 1.0 MAC can be detected by assessment of NWR. This method will permit comparison of effects of inhaled anesthetics or anesthetic combinations on spinal processing in equids.
Resumo:
Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity.
Resumo:
Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.
Resumo:
Hereditary spastic paraplegia (HSP) associated with thin corpus callosum is a rare autosomal recessive neurodegenerative disorder characterized by an abnormally thin corpus callosum, normal motor development, slowly progressive spastic paraparesis and cognitive deterioration. To investigate and localize abnormalities in the brains of two Chinese patients with HSP-TCC, with mutations in the spatacsin gene. Diffusion tensor imaging (DTI) was used to determine the mean diffusion (MD) and fractional anisotropy (FA) in the brains of the patients in comparison to 20 healthy subjects. Voxel-based analysis (VBA) of both the diffusion and anisotropy values were performed using statistical parametric mapping (SPM). Significant changes with MD increase and FA reduction were found in the already known lesions including the corpus callosum, cerebellum and thalamus. In addition, changes were also found in regions that appear to be normal in conventional MRI, such as the brain stem, internal capsule, cingulum and subcortical white matter including superior longitudinal fascicle and inferior longitudinal fascicle. Neither increase in FA nor reduction in MD was detected in the brain. Our study provides clear in vivo MR imaging evidence of a more widespread brain involvement of HSP-TCC. MD is more sensitive than FA in detecting lesions in thalamus and subcortical white matter, suggesting that MD may be a better marker of the disease progression.
Resumo:
Disturbances of the motor and sensory system as well as an alteration of the preparation of movements have been reported to play a role in the pathogenesis of dystonias. However, it is unclear whether higher aspects of cortical – like cognitive – functions are also involved. Recently, the NoGo-anteriorization (NGA) elicited with a visual continuous performance test (CPT) during recording of a 21-channel electroencephalogram has been proposed as an electrophysiological standard-index for cognitive response control. The NGA consists of a more anterior location of the positive area of the brain electrical field associated with the inhibition (NoGo-condition) compared with that of the execution (Go-condition) of a prepared motor response in the CPT. This response control paradigm was applied in 16 patients with writer’s cramp (WC) and 14 age matched healthy controls. Topographical analysis of the associated event-related potentials revealed a significant (P < 0.05) NGA effect for both patients and controls. Moreover, patients with WC showed a significantly higher global field power value (P < 0.05) in the Go-condition and a significantly higher difference-amplitude (P < 0.05) in the NoGo-condition. A source location analysis with the low resolution electromagnetic tomography (LORETA) method demonstrated a hypoactivity for the Go-condition in the parietal cortex of the right hemisphere and a hyperactivity in the NoGo-condition in the left parietal cortex in patients with WC compared with healthy controls. These results indicate an altered response control in patients with WC in widespread cortical brain areas and therefore support the hypothesis that the pathogenesis of WC is not restricted to a pure sensory-motor dysfunction.
Resumo:
Einleitung Die Annahme, dass Sport nicht nur positive Effekte auf die körperliche Gesundheit, sondern auch auf die kognitive Leistung haben kann, konnte anhand experimenteller Studien mit Erwachsenen weitgehend bestätigt werden. Ob dieselben Effekte auch bei Kindern und Jugendlichen vorzufinden sind, kann mit Blick auf die mangelnde empirische Evidenz in dieser Altersgruppe kaum zufriedenstellend beantwortet werden (Chang et al., 2012). Will man zudem der Frage nach den Wirkmechanismen nachgehen, sind Unter-suchungsdesigns angezeigt, die theoriegeleitet verschiedene Sportinterventionen mit unterschiedlichen Beanspruchungsmodalitäten kombinieren. So ist unter der Annahme der cardiovascular fitness hypothesis (Etnier et al., 2006) zur gezielten Förderung der kognitiven Leistungsfähigkeit ein systematisches Ausdauertraining sinnvoll, während theoretische Ansätze, die neurophysiologische Korrelate zur Erklärung des Zusammenhangs zwischen Sport und Kognition heranziehen (Diamond, 2000) eher kognitiv sowie koordinativ anspruchsvolle Sportangebote nahelegen würden. Daher geht der vorliegende Beitrag der Frage nach, ob spezifisch konzipierte langfristige Interventionen im Sportunterricht einen spezifischen Effekt auf die kognitive Leistungsfähigkeit von Primarschulkindern haben können. Methode Im Rahmen der quasiexperimentellen Längsschnittstudie „Sport und Kognition“ (SpuK_5.0) wurden insgesamt 250 Schülerinnen und Schüler von 16 fünften Klassen untersucht. Während knapp zwei Monaten absolvierten je vier Klassen während zwei Lektionen des obligatorischen Sportunterrichts entweder ein spielsportbezogenes EF-Training oder ein Ausdauertraining resp. ein kognitives oder kein spezifisches Training (Kontrollgruppe mit regulärem Sportunterricht). Durch die Konzeption dieser vier Experi-mentalbedingungen wurde sichergestellt, dass alle vier möglichen Kombinationen aus hoher resp. niedriger kognitiver und körperlicher Beanspruchung im Design repräsentiert waren. Ergebnisse und Diskussion Im Beitrag werden erste Ergebnisse der noch laufendenden SpuK_5.0-Studie vorgestellt und vor dem Hintergrund aktueller theoretischer Annahmen zu den zugrundeliegenden Wirkmechanismen diskutiert. Literatur Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cere-bellum and prefrontal cortex. Child Development, 71, 44-56. Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the rela-tionship between aerobic fitness and cognitive performance. BRAIN RESEARCH, 52, 119-130.
Resumo:
The nail unit is the largest and a rather complex skin appendage. It is located on the dorsal aspect of the tips of fingers and toes and has important protective and sensory functions. Development begins in utero between weeks 7 and 8 and is fully formed at birth. For its correct development, a great number of signals are necessary. Anatomically, it consists of 4 epithelial components: the matrix that forms the nail plate; the nail bed that firmly attaches the plate to the distal phalanx; the hyponychium that forms a natural barrier at the physiological point of separation of the nail from the bed; and the eponychium that represents the undersurface of the proximal nail fold which is responsible for the formation of the cuticle. The connective tissue components of the matrix and nail bed dermis are located between the corresponding epithelia and the bone of the distal phalanx. Characteristics of the connective tissue include: a morphogenetic potency for the regeneration of their epithelia; the lateral and proximal nail folds form a distally open frame for the growing nail; and the tip of the digit has rich sensible and sensory innervation. The blood supply is provided by the paired volar and dorsal digital arteries. Veins and lymphatic vessels are less well defined. The microscopic anatomy varies from nail subregion to subregion. Several different biopsy techniques are available for the histopathological evaluation of nail alterations.
Resumo:
Background: Visuoperceptual deficits in dementia are common and can reduce quality of life. Testing of visuoperceptual function is often confounded by impairments in other cognitive domains and motor dysfunction. We aimed to develop, pilot, and test a novel visuocognitive prototype test battery which addressed these issues, suitable for both clinical and functional imaging use. Methods: We recruited 23 participants (14 with dementia, 6 of whom had extrapyramidal motor features, and 9 age-matched controls). The novel Newcastle visual perception prototype battery (NEVIP-B-Prototype) included angle, color, face, motion and form perception tasks, and an adapted response system. It allows for individualized task difficulties. Participants were tested outside and inside the 3T functional magnetic resonance imaging (fMRI) scanner. Functional magnetic resonance imaging data were analyzed using SPM8. Results: All participants successfully completed the task inside and outside the scanner. Functional magnetic resonance imaging analysis showed activation regions corresponding well to the regional specializations of the visual association cortex. In both groups, there was significant activity in the ventral occipital-temporal region in the face and color tasks, whereas the motion task activated the V5 region. In the control group, the angle task activated the occipitoparietal cortex. Patients and controls showed similar levels of activation, except on the angle task for which occipitoparietal activation was lower in patients than controls. Conclusion: Distinct visuoperceptual functions can be tested in patients with dementia and extrapyramidal motor features when tests use individualized thresholds, adapted tasks, and specialized response systems.