7 resultados para Selection in vivo

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzimidazoles were the first broad-spectrum anthelmintics and are still in use today against gastro-intestinal nematodes of ruminants such as Haemonchus contortus. Benzimidazoles block the polymerization of nematode microtubules. However, their efficacy is jeopardized by the spread of drug-resistant parasites that carry point mutations in beta-tubulin. Here we use a novel in vitro selection-in vivo propagation protocol to breed drug-resistant H. contortus. After 8 generations of selection with thiabendazole an in vitro resistance factor of 1000 was reached that was also relevant in vivo in infected sheep. The same procedure carried out with ivermectin produced only a moderate resistance phenotype that was not apparent in sheep. Cloning and sequencing of the beta-tubulin genes from the thiabendazole-resistant H. contortus mutants revealed all of the isotype 1 alleles, and part of the isotype 2 alleles, to carry the mutation glutamate(198) to alanine (E198A). An allele-specific PCR was developed, which may be helpful in monitoring the prevalence of alanine(198) encoding alleles in the beta-tubulin isotype 1 gene pool of H. contortus in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To search the literature and assess the short- and long-term release of bisphenol-A (BPA) in human tissues after treatment with dental sealants. DATA Two review authors performed data extraction independently and in duplicate using data collection forms. Disagreements were resolved by discussion with an arbiter. SOURCES Electronic database searches of published and unpublished literature were performed. The following electronic databases with no language and publication date restrictions were searched: MEDLINE (via Ovid and Pubmed), EMBASE (via ovid), Cochrane Trials Register and CENTRAL. The reference lists of all eligible studies were hand-searched. STUDY SELECTION In the absence of RCTs, six interventional and two observational studies, examining in vivo BPA release in human salivary, blood and urinary samples, were included. Due to the heterogeneity in methodology and reporting, the main synthesis of the results was qualitative. The quantitative synthesis based on the weighted Z-test could only include two studies. BPA levels identified in saliva ranged from traces below the method's detection limit to 30 μg/ml. In urine, BPA quantities spanned from 0.17 mg/g to 45.4 mg/g. BPA was not traced in any blood sample at any point of time in the relevant studies. The quantitative analysis showed evidence of BPA release one hour after sealant placement compared to the amount traced before restoration (Stouffer's z trend: <0.001). CONCLUSIONS The available evidence on this topic derived from studies that represent a moderate level of evidence. Nevertheless, the available evidence supports that BPA is released in saliva after sealant placement. CLINICAL SIGNIFICANCE From the qualititative and quantitative synthesis of studies, it is reasonable to conclude that BPA is released after placement of some dental pit and fissure sealants in the oral cavity. The biggest quantities are detected in saliva immediately after or one hour after their placement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Clinical treatment of spinal metastasis is gaining in complexity while the underlying biology remains unknown. Insufficient biological understanding is due to a lack of suitable experimental animal models. Intercellular adhesion molecule-1 (ICAM1) has been implicated in metastasis formation. Its role in spinal metastasis remains unclear. It was the aim to generate a reliable spinal metastasis model in mice and to investigate metastasis formation under ICAM1 depletion. MATERIAL AND METHODS B16 melanoma cells were infected with a lentivirus containing firefly luciferase (B16-luc). Stable cell clones (B16-luc) were injected retrogradely into the distal aortic arch. Spinal metastasis formation was monitored using in vivo bioluminescence imaging/MRI. Neurological deficits were monitored daily. In vivo selected, metastasized tumor cells were isolated (mB16-luc) and reinjected intraarterially. mB16-luc cells were injected intraarterially in ICAM1 KO mice. Metastasis distribution was analyzed using organ-specific fluorescence analysis. RESULTS Intraarterial injection of B16-luc and metastatic mB16-luc reliably induced spinal metastasis formation with neurological deficits (B16-luc:26.5, mB16-luc:21 days, p<0.05). In vivo selection increased the metastatic aggressiveness and led to a bone specific homing phenotype. Thus, mB16-luc cells demonstrated higher number (B16-luc: 1.2±0.447, mB16-luc:3.2±1.643) and increased total metastasis volume (B16-luc:2.87±2.453 mm3, mB16-luc:11.19±3.898 mm3, p<0.05) in the spine. ICAM1 depletion leads to a significantly reduced number of spinal metastasis (mB16-luc:1.2±0.84) with improved neurological outcome (29 days). General metastatic burden was significantly reduced under ICAM1 depletion (control: 3.47×10(7)±1.66×10(7); ICAM-1-/-: 5.20×10(4)±4.44×10(4), p<0.05 vs. control) CONCLUSION Applying a reliable animal model for spinal metastasis, ICAM1 depletion reduces spinal metastasis formation due to an organ-unspecific reduction of metastasis development.