8 resultados para Seismic reflection method
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A new simple method for two-dimensional determination of optical density of macular pigment xanthophyll (ODx) in clinical routine is based on a single blue-reflection fundus image. Individual different vignetting is corrected by a shading function. For its construction, nodes are automatically found in structureless image regions. The influence of stray light in elderly crystalline lenses is compensated by a correction function that depends on age. The reproducibility of parameters in a one-wavelength reflection method determined for three subjects (47, 61, and 78 years old) was: maxODx = 6.3%, meanODx = 4.6%, volume = 6%, and area = 6% already before stray-light correction. ODx was comparable in pseudophakic and in an eye with a crystalline lens of the same 11 subjects after stray-light correction. Significant correlation in ODx was found between the one-wavelength reflection method and the two-wavelength autofluorescence method for pseudophakic and cataract eyes of 19 patients suffering from dry age-related macular degeneration (AMD) (R(2) = 0.855). In pseudophakic eyes, maxODx was significantly lower for dry AMD (n = 45) (ODx = 0.491±0.102 ODU) than in eyes with healthy fundus (n = 22) (ODx = 0.615±0.103 ODU) (p = 0.000033). Also in eyes with crystalline lens, maxODx was lower in AMD (n = 125) (ODx = 0.610±0.093 ODU) than in healthy subjects (n = 45) (ODx = 0.674±0.098 ODU) (p = 0.00019). No dependence on age was found in the pseudophakic eyes both of healthy subjects and AMD patients.
Resumo:
In the late 19th century, F.A. FOREL led investigations of the Rhone River delta area of Lake Geneva that resulted in the dis- covery of a textbook example of a river-fed delta system containing impressive subaquatic channels. Well ahead of the marine counterparts, scientific observations and interpretations of water currents shaping the delta edifice for the first time documented how underflow currents carry cold, suspension-laden waters from the river mouth all the way to the deep basin. These early investigations of the Rhone delta laid the basis for follow-up studies in the 20th and 21th centuries. Sediment coring, water-column measurements, manned submersible diving, seismic reflection profiling and bathymetric sur- veying eventually provided a rich database to unravel the key erosional and depositional processes, further documenting the impact of human-induced changes in the catchment. With the merging of old and new scientific knowledge, today a comprehensive understanding prevails of how a delta changes through time, how its channels are formed, and what potential natural hazards may be related to its evolution. New and efficient bathymetric techniques, paired with novel coring operations, provided a time-series of morphologic evolution showing and quantifying the high dynamics of the delta/channel evolution in an unprecedented temporal and spatial reso- lution. Future investigations will continue to further quantify these dynamic processes and to link the evolution of the subaquatic domain with changes and processes in the catchment and with natural hazards. Its size, easy access, and large variety of states and processes will continue to make the Rhone delta area a perfect ‘laboratory’ in which general processes can be studied that could be upscaled or downscaled to other marine and lacustrine deltas.
Resumo:
Subaquatic volcanic activity has been ongoing in Lake Kivu since the early Holocene and has a dynamic effect on the biological productivity in the surface water, and the preservation of carbonate in the deep anoxic water. Groundwater discharge into the lake’s deepwater propels the upward advection of the water column that ultimately supplies nutrients to the surface water for biological production. The amount of nutrients supplied from the deepwater can be increased suddenly by (1) a cold meteorological event that drives deep seasonal mixing resulting in increased nutrients from below and oxygen from above, or (2) subaquatic volcanic activity that induces a buoyant hydrothermal plume, which entrains nutrients from the deepwater and results in anoxia or suboxic conditions in the surface water. Previous sedimentological studies in Lake Kivu have hypothesized that regional climatic changes are responsible for sudden changes in the preservation of carbonates in the Main Basin. Here we reveal that sublacustrine volcanic events most likely induce the abrupt changes to the geochemistry in the sediment in Lake Kivu. An unprecedented look into the sediment stratigraphy and geochemistry from high-resolution seismic-reflection, and 15N-isotope analyses was conducted in the Main Basin. The results reveal that buoyant hydrothermal plumes caused by subaquatic volcanic activity are a possible trigger for increased biological productivity and organic matter preservation, and that ongoing hydrothermal activity increases the alkalinity in the deepwater, leading to carbonate preservation. The onset of carbonate preservation since the 1970s that is currently observed in the sediment could indicate that hydrothermal discharge has recently increased in the lake.
Resumo:
Lake Towuti (2.5°S, 121.5°E) is a long-lived, tectonic lake located on the Island of Sulawesi, Indonesia, and in the center of the Indo-Pacific warm pool (IPWP). Lake Towuti is connected with upstream lakes Matano and Mahalona through the Mahalona River, which constitutes the largest inlet to the lake. The Mahalona River Delta is prograding into Lake Towuti’s deep northern basin thus exerting significant control on depositional processes in the basin. We combine high-resolution seismic reflection and sedimentological datasets from a 19.8-m-long sediment piston core from the distal edge of this delta to characterize fluctuations in deltaic sedimentation during the past ~29 kyr BP and their relation to climatic change. Our datasets reveal that, in the present, sedimentation is strongly influenced by deposition of laterally transported sediments sourced from the Mahalona River Delta. Variations in the amount of laterally transported sediments, as expressed by coarse fraction amounts in pelagic muds and turbidite recurrence rates and cumulative thicknesses, are primarily a function of lake-level induced delta slope instability and delta progradation into the basin. We infer lowest lake-levels between ~29 and 16, a gradual lake level rise between ~16 and 11, and high lake-levels between ~11 and 0 kyr BP. Periods of highest turbidite deposition, ~26 to 24 and ~18 to 16 kyr BP coincide with Heinrich events 2 and 1, respectively. Our lake-level reconstruction therefore supports previous observations based on geochemical hydroclimate proxies of a very dry last glacial and a wet Holocene in the region, and provides new evidence of millennial-scale variations in moisture balance in the IPWP.
Resumo:
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ? -0.86) as well as calcium release (r(2) ? -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Resumo:
OBJECTIVES Application of the recently developed optical method based on the monitoring of the specular reflection intensity to study the protective potential of the salivary pellicle layer against early enamel erosion. METHODS The erosion progression was compared between two treatment groups: enamel samples coated by the 15 h-in vitro-formed salivary pellicle layer (group P, n=90) and the non-coated enamel surfaces (control group C, n=90). Different severity of the erosive impact was modelled by the enamel incubation in 1% citric acid (pH=3.6) for 2, 4, 8, 10 or 15 min. Erosion quantification was performed by the optical method as well as by the microhardness and calcium release analyses. RESULTS Optical assessment of the erosion progression showed erosion inhibition by the in vitro salivary pellicle in short term acidic treatments (≤ 4 min) which was also confirmed by microhardness measurements proving significantly less (p<0.05) enamel softening in the group P at 2 and 4 min of erosion compared to the group C. SEM images demonstrated less etched enamel interfaces in the group P at short erosion durations as well. CONCLUSIONS Monitoring of the specular reflection intensity can be successfully applied to quantify early erosion progression in comparative studies. In vitro salivary pellicle (2h) provides erosion inhibition but only in short term acidic exposures. CLINICAL SIGNIFICANCE The proposed optical technique is a promising tool for the fast and non-invasive erosion quantification in clinical studies.