41 resultados para Seismic Hazard

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a multi-disciplinary two-step approach to assess the potential for seismic hazard of the Aare valley and perialpine Lake Thun (Switzerland). High-resolution seismic images and multibeam-bathymetric data, complemented by field observations represent the tools to identify potentially active seismogenic fault structures. Several second-order earthquake effects such as subaqueous mass movements, seismites and liquefaction structures have been observed in Lake Thun and ultimately document the seismic activity of the study area. A first investigation of possibly first-order active structures is presented in the scope of this study. Recently acquired bathymetric data in Lake Thun reveal significant morphologic depressions aligning with an observed lineament on land. Furthermore, high-resolution seismic images indicate potential fault structures in Lake Thun. However, their continuation with depth has to be verified with a multichannel seismic campaign, scheduled for March 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting with an overview on losses due to mountain hazards in the Russian Federation and the European Alps, the question is raised why a substantial number of events still are recorded—despite considerable efforts in hazard mitigation and risk reduction. The main reason for this paradox lies in a missing dynamic risk-based approach, and it is shown that these dynamics have different roots: firstly, neglecting climate change and systems dynamics, the development of hazard scenarios is based on the static approach of design events. Secondly, due to economic development and population dynamics, the elements at risk exposed are subject to spatial and temporal changes. These issues are discussed with respect to temporal and spatial demands. As a result, it is shown how risk is dynamic on a long-term and short-term scale, which has to be acknowledged in the risk concept if this concept is targeted at a sustainable development of mountain regions. A conceptual model is presented that can be used for dynamical risk assessment, and it is shown by different management strategies how this model may be converted into practice. Furthermore, the interconnectedness and interaction between hazard and risk are addressed in order to enhance prevention, the level of protection and the degree of preparedness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five seismic units may be identified in the similar to 8 m thick Holocene sediment package at the bottom of the Blue Hole, a 120 m deep sinkhole located in the atoll lagoon of Lighthouse Reef, Belize. These units may be correlated with the succession of an existing 5.85-m-long sediment core that reaches back to 1385 kyrs BP. The identification of seismic units is based on the fact that uniform, fine-grained background sediments show weak reflections while alternating background and coarser-grained event (storm) beds exhibit strong reflections in the seismic profiles. The main source of sediments is the marginal atoll reef and adjacent lagoon area to the east and north. Northeasterly winds and storms transport sediment into the Blue Hole, as seen in the eastward increase in sediment thickness, i.e., the eastward shallowing of the Blue Hole. Previous assumptions of much thicker Holocene sediment packages in the Blue Hole could not be confirmed. So far, close to 6-m-long cores were retrieved from the Blue Hole but the base of the sedimentary succession remains to be recovered. The nature of the basal sediments is unknown but mid-Holocene and possibly older, Pleistocene sinkhole deposits can be expected. The number of event beds identified in the Blue Hole (n = 37) during a 1.385 kyr-long period and the number of cyclones listed in historical databases suggest that only strong hurricanes (categories 4 and 5) left event beds in the Blue Hole sedimentary succession. Storm beds are numerous during 13-0.9 kyrs BP and 0.8-0.5 kyrs BP.