5 resultados para Segmento de Smartphones

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web surveys are becoming increasingly popular in survey research. Compared with face-to-face, telephone and mail surveys, web surveys may contain a different and new source of measurement error and bias: the type of device that respondents use to answer the survey questions. To the best of our knowledge, this is the first study that tests whether the use of mobile devices affects survey characteristics and stated preferences in a web-based choice experiment. The web survey was carried out in Germany with 3,400 respondents, of which 12 per cent used a mobile device (i.e. tablet or smartphone), and comprised a stated choice experiment on externalities of renewable energy production using wind, solar and biomass. Our main finding is that survey characteristics such as interview length and acquiescence tendency are affected by the device used. In contrast to what might be expected, we find that, compared with respondents using desktop computers and laptops, mobile device users spent more time to answer the survey and are less likely to be prone to acquiescence bias. In the choice experiment, mobile device users tended to be more consistent in their stated choices, and there are differences in willingness to pay between both subsamples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Individuals with type 1 diabetes (T1D) have to count the carbohydrates (CHOs) of their meal to estimate the prandial insulin dose needed to compensate for the meal’s effect on blood glucose levels. CHO counting is very challenging but also crucial, since an error of 20 grams can substantially impair postprandial control. Method: The GoCARB system is a smartphone application designed to support T1D patients with CHO counting of nonpacked foods. In a typical scenario, the user places a reference card next to the dish and acquires 2 images with his/her smartphone. From these images, the plate is detected and the different food items on the plate are automatically segmented and recognized, while their 3D shape is reconstructed. Finally, the food volumes are calculated and the CHO content is estimated by combining the previous results and using the USDA nutritional database. Results: To evaluate the proposed system, a set of 24 multi-food dishes was used. For each dish, 3 pairs of images were taken and for each pair, the system was applied 4 times. The mean absolute percentage error in CHO estimation was 10 ± 12%, which led to a mean absolute error of 6 ± 8 CHO grams for normal-sized dishes. Conclusion: The laboratory experiments demonstrated the feasibility of the GoCARB prototype system since the error was below the initial goal of 20 grams. However, further improvements and evaluation are needed prior launching a system able to meet the inter- and intracultural eating habits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diet-related chronic diseases severely affect personal and global health. However, managing or treating these diseases currently requires long training and high personal involvement to succeed. Computer vision systems could assist with the assessment of diet by detecting and recognizing different foods and their portions in images. We propose novel methods for detecting a dish in an image and segmenting its contents with and without user interaction. All methods were evaluated on a database of over 1600 manually annotated images. The dish detection scored an average of 99% accuracy with a .2s/image run time, while the automatic and semi-automatic dish segmentation methods reached average accuracies of 88% and 91% respectively, with an average run time of .5s/image, outperforming competing solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web surveys are becoming increasingly popular in survey research including stated preference surveys. Compared with face-to-face, telephone and mail surveys, web surveys may contain a different and new source of measurement error and bias: the type of device that respondents use to answer the survey questions. This is the first study that tests whether the use of mobile devices, tablets or smartphones, affects survey characteristics and stated preferences in a web-based choice experiment. The web survey on expanding renewable energy production in Germany was carried out with 3182 respondents, of which 12% used a mobile device. Propensity score matching is used to account for selection bias in the use of mobile devices for survey completion. We find that mobile device users spent more time than desktop/laptop users to answer the survey. Yet, desktop/laptop users and mobile device users do not differ in acquiescence tendency as an indicator of extreme response patterns. For mobile device users only, we find a negative correlation between screen size and interview length and a positive correlation between screen size and acquiescence tendency. In the choice experiment data, we do not find significant differences in the tendency to choose the status quo option and scale between both subsamples. However, some of the estimates of implicit prices differ, albeit not in a unidirectional fashion. Model results for mobile device users indicate a U-shaped relationship between error variance and screen size. Together, the results suggest that using mobile devices is not detrimental to survey quality.