58 resultados para Seeds dispersal

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seed dispersal is one of the most important mechanisms shaping biodiversity, and animals are one of the key dispersal vectors. Animal seed dispersal can directly or indirectly be altered by invasive organisms through the establishment of new or the disruption of existing seed dispersal interactions. So far it is known for a few gastropod species that they ingest and defecate viable plant seeds and consequently act as seed dispersers, referred to as gastropodochory. In a multi-species experiment, consisting of five different plant species and four different gastropod species, we tested with a fully crossed design whether gastropodochory is a general mechanism across native gastropod species, and whether it is altered by the invasive alien slug species Arion lusitanicus. Specifically, we hypothesized that a) native gastropod species consume the seeds from all tested plant species in equal numbers (have no preference), b) the voracious invasive alien slug A. lusitanicus – similarly to its herbivore behaviour – consumes a higher amount of seeds than native gastropods, and that c) seed viability is equal among different gastropod species after gut passage. As expected all tested gastropod species consumed all tested plant species. Against our expectation there was a difference in the amount of consumed seeds, with the largest and native mollusk Helix pomatia consuming most seeds, followed by the invasive slug and the other gastropods. Seed damage and germination rates did not differ after gut passage through different native species, but seed damage was significantly higher after gut passage through the invasive slug A. lusitanicus, and their germination rates were significantly reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity-ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m(-2) and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m(-2). One year after seed addition, local plant species richness had increased on average by six species m(-2) (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m(-2) (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump-shaped model appears to be the limiting outline of the natural diversity-productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agri-environmental schemes involving organic farming or set-aside management aim at promoting biodiversity and restoring ecosystem functioning in agrarian landscapes. Application of pesticides in these crop fields is strongly regulated facilitating the spread of weeds but also allowing for the establishment of endangered herbs and a variety of animals.Recent studies found gastropods and earthworms to be legitimate dispersers of seeds of wild plants. We assumed that both groups also playa significant role in the spread and establishment of wild plants within crop fields. Therefore, we are conducting a series of experiments in three different study systems on (1) the role of earthworms and gastropods as dispersers of rare herbs and weeds in an organic rye field in Germany, (2) the seed feeding behavior of gastropods of plants sown in fallow ground in Switzerland, and (3) weed dispersal in irrigated rice fields by golden apple snails in the Philippines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dispersal limitation is often involved when the species composition of a dry abandoned grassland shows a slow response to resumed regular mowing. A seed-addition experiment, using 32 species which do not belong to the local species pool, was performed on Monte San Giorgio (southern Switzerland) to test whether the low recruitment success was due to dispersal limitation or due to unfavourable microsite conditions. In October 1997, 20 species were individually sown in six 3 × 4 m blocks of a 2 × 2 factorial “partial” split-plot design with treatments of abandonment vs. mowing and undisturbed vs. root-removed soil, this last being applied in small naturally-degradable pots. Moreover, 12 species were sown only in the treatments on undisturbed soil. Seedlings of sown and spontaneously germinating seeds were observed on 16 occasions over one 12-month period. Seeds of 31 out of the 32 species germinated. Twenty-four species showed germination rates higher than 5% and different seasonal germination patterns. Established vegetation, especially the tussocks ofMolinia arundinacea, reduced the quality of microsites for germination. Whereas a few species germinated better under the litter ofMolinia arundinacea, many more germinated better under the more variable microsite conditions of a mown grassland. Only a few seedlings of 25 species out of the 31 germinated species survived until October 1998. Seedling survival was negatively affected by litter, unfavourable weather conditions (frost and dry periods followed by heavy rains) and herbivory (slugs and grasshoppers). Tussocks ofMolinia arundinacea, however, tended to protect seedlings. The poor establishment success of “new” species observed in abandoned meadows on Monte San Giorgio after resumed mowing is due to dispersal and microsite limitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells-a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new prenylated pterocarpan, named morisianine, was isolated together with the known secondary metabolites erybraedin C, psoralen and angelicin from the seeds of Bituminaria morisiana. The structures of the compounds were elucidated mainly by 1D and 2D NMR experiments as well as mass spectrometry. The new compound was subjected to cytotoxicity screening against a panel of human cancer cells.