16 resultados para Seasonal-changes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
There is a great need for animal models of osteoporosis and sheep are a suitable large animal that meets most requirements. Since it is known that bone mass in humans responds to seasonal changes, this study investigated natural bone metabolism in sheep in order to better define the sheep as a model for osteoporosis. Bone mineral density (BMD), trabecular structure, biochemical markers of bone formation and resorption and estrogen were analysed over a period of 18 months. The lowest BMDs, measured by peripheral quantitative computed tomography (pQCT), were observed during winter. Thereafter, a 5.1% increase in BMD was observed during spring and summer (P<0.05). Bone resorption markers showed a variable pattern, with higher values in spring compared to autumn (P<0.001). The physiological estrus phase during autumn was detected by serum estrogen levels. The findings show that it is necessary to take seasonal variations into account if sheep are used to establish an animal model for osteoporosis.
Resumo:
For low-energy organisms such as bivalves, the costs of thermal compensation of biological rates (synonymous with acclimation or acclimatization) may be higher than the benefits. We therefore conducted two experiments to examine the effect of seasonal temperature changes on behaviour and oxygen consumption. In the first experiment, we examined the effects of seasonal temperature changes on the freshwater bivalve Anodonta anatina, taking measurements each month for a year at the corresponding temperature for that time of year. There was no evidence for compensation of burrowing valve closure duration or frequency, or locomotory speed. In the second experiment, we compared A. anatina at summer and winter temperatures (24 and 4°C, respectively) and found no evidence for compensation of the burrowing rate, valve closure duration or frequency, or oxygen consumption rates during burrowing, immediately after valve closure or at rest. Within the experimental limits of this study, the evidence suggests that thermal compensation of biological rates is not a strategy employed by A. anatina. We argue that this is due to either a lack of evolutionary pressure to acclimatize, or evolutionary pressure to not acclimatize. Firstly, there is little incentive to increase metabolic rate to enhance predatory ability given that these are filter feeders. Secondly, maintained low energetic demand, enhanced at winter temperatures, is essential for predator avoidance, i.e. valve closure. Thus, we suggest that the costs of acclimatization outweigh the benefits in A. anatina.
Resumo:
Temperature plays a critical role in determining the biology of ectotherms. Many animals have evolved mechanisms that allow them to compensate biological rates, i.e. adjust biological rates to overcome thermodynamic effects. For low energy-organisms, such as bivalves, the costs of thermal compensation may be greater than the benefits, and thus prohibitive. To examine this, two experiments were designed to explore thermal compensation in Unio tumidus. Experiment 1 examined seasonal changes in behaviour in U. tumidus throughout a year. Temperature had a clear effect on burrowing rate with no evidence of compensation. Valve closure duration and frequency were also strongly affected by seasonal temperature change, but there was slight evidence of partial compensation. Experiment 2 examined oxygen consumption during burrowing, immediately following valve opening and at rest in summer (24 °C), autumn (14 °C), winter (4 °C), and spring (14 °C) acclimatized U. tumidus. Again, there was little evidence of burrowing rate compensation, but some evidence of partial compensation of valve closure duration and frequency. None of the oxygen compensation rates showed any evidence of thermal compensation. Thus, in general, there was only very limited evidence of thermal compensation of behaviour and no evidence of thermal compensation of oxygen compensation rates. Based upon this evidence, we argue that there is no evolutionary pressure for these bivalves to compensate these biological rates. Any pressure may be to maintain or even lower oxygen consumption as their only defence against predation is to close their valves and wait. An increase in oxygen consumption will be detrimental in this regard so the cost of thermal compensation may outweigh the benefits.
Resumo:
The best characteristics of phenological observations are their description of seasons and seasonal patterns. Specific phenological phases are used to define the beginning and the end of seasons that form phenological calendars. Phenological observations more closely capture the integrated seasonal rhythm than statistically derived means or thresholds from climate elements. They only provide approximate indicators of seasonal changes and cannot replace visible or directly measurable phenomena. Including abiotic observations such as the timing of frost, thawing, icing, snow and fog even provides seasonality descriptions beyond the vegetation period. The length and position of seasons within the year is a foundation for an integrated description of seasonality presented as a phenological season diagram. Phenological observations are the indispensable basis for an integral description of a seasonal classification and seasonality. A well designed phenological diagram could offer a comprehensive picture of the rhythm and amplitude of seasons.
Resumo:
Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems.
Resumo:
This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.
Resumo:
Knowledge of past natural flood variability and controlling climate factors is of high value since it can be useful to refine projections of the future flood behavior under climate warming. In this context, we present a seasonally resolved 2000 year long flood frequency and intensity reconstruction from the southern Alpine slope (North Italy) using annually laminated (varved) lake sediments. Floods occurred predominantly during summer and autumn, whereas winter and spring events were rare. The all-season flood frequency and, particularly, the occurrence of summer events increased during solar minima, suggesting solar-induced circulation changes resembling negative conditions of the North Atlantic Oscillation as controlling atmospheric mechanism. Furthermore, the most extreme autumn events occurred during a period of warm Mediterranean sea surface temperature. Interpreting these results in regard to present climate change, our data set proposes for a warming scenario, a decrease in summer floods, but an increase in the intensity of autumn floods at the South-Alpine slope.
Resumo:
This study provides a continuous lateglacial and Holocene record of diatom silica oxygen isotope changes (delta O-18(DIAT)) in a subalpine lake sediment sequence obtained from the Retezat Mts (Taul dintre Brazi, 1740 m a.s.l.). This through-flow, shallow, high-altitude lake with a surface area of only 0.4 ha has short water residence time and is predominantly fed by snowmelt and rainwater. Its delta O-18(DIAT) record principally reflects the oxygen isotope composition of the winter and spring precipitation, as diatom blooms occur mainly in the spring and early summer. Hence, changes in delta O-18(DIAT) are interpreted as seasonal scale changes: in the amount of winter precipitation. Low oxygen isotope values (27-28.5 parts per thousand) occurred during the lateglacial until 12,300 cal BP, followed by a sharp increase thereafter. In the Holocene delta O-18(DIAT) values ranged from 29 to 31 parts per thousand until 3200 cal BP, followed by generally lower values during the late Holocene (27-30 parts per thousand). Short-term decreases in the isotopic values were found between 10,140-9570, 9000-8500, 7800-7300, 6300-5800, 5500-5000 and at 8015, 4400, 4000 cal BP. After 3200 cal BP a decreasing trend was visible with the lowest values between 3100-2500 and after 2100 cal BP The general trend in the record suggests that contribution of winter precipitation was generally lower between 11,680 and 3200 cal BP, followed by increased contribution during the last millennia. The late Holocene decrease in delta O-18(DIAT) shows good agreement with the speleothem delta O-18, lake level and testate amoebae records from the Carpathian Mountains that also display gradual delta O-18 decrease and lake level/mire water table level rise after 3200 cal BR Strong positive correlation with North Atlantic circulation and solar activity proxies, such as the Austrian and Hungarian speleothem records, furthermore suggested that short-term increases in the isotopic ratios in the early and mid Holocene are likely connectable to high solar activity phases and high frequency of positive North Atlantic Oscillation indexes that may have resulted in decreased winter precipitation in this region.
Resumo:
When determining risk related to natural hazard processes, many studies neglect the investigations of the damage potential or are limited to the assessment of immobile values like buildings. However, persons as well as mobile values form an essential part of the damage potential. Knowledge of the maximum number of exposed persons in an endangered area is of great importance for elaborating evacuation plans and immediate measures in case of catastrophes. In addition, motor vehicles can also be highly damaged, as was shown by the analysis of avalanche events. With the removal of mobile values in time as a preventive measure this kind of damage can be minimised. This study presents a method for recording the maximum number of exposed persons and monetarily assessing motor vehicles in the municipality of Galt¨ur (Tyrol, Austria). Moreover, general developments of the damage potential due to significant socio-economic changes since the mid-twentieth century are pointed out in the study area. The present situation of the maximum number of persons and mobile values in the official avalanche hazard zones of the municipality is described in detail. Information on the number of persons is derived of census data, tourism and employment statistics. During the winter months, a significant increase overlaid by strong short-term fluctuation in the number of persons can be noted. These changes result from a higher demand of tourism related manpower as well as from varying occupancy rates. The number of motor vehicles in endangered areas is closely associated to the number of exposed persons. The potential number of motor vehicles is investigated by means of mapping, statistics on the stock of motor vehicles and the density distribution. Diurnal and seasonal fluctuations of the investigated damage potential are pointed out. The recording of the number of persons and mobile values in endangered areas is vital for any disaster management.
Resumo:
We present a record of particulate dust concentration and size distribution in subannual resolution measured on the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice core drilled in the Atlantic sector of the East Antarctic plateau. The record reaches from present day back to the penultimate glacial until 145,000 years B.P. with subannual resolution from 60,000 years B.P. to the present. Mean dust concentrations are a factor of 46 higher during the glacial (~850–4600 ng/mL) compared to the Holocene (~16–112 ng/mL) with slightly smaller dust particles during the glacial comparedto the Holocene and with an absolute minimum in the dust size at 16,000 years B.P. The changes in dust concentration are mainly attributed to changes in source conditions in southern South America. An increase in the modal value of the dust size suggests that at 16,000 years B.P. a major change in atmospheric circulation apparently allowed more direct transport of dust particles to the EDML drill site. We find a clear in-phase relation of the seasonal variation in dust mass concentration and dust size during the glacial
(r(conc,size) = 0.8) but no clear phase relationship during the Holocene (0
Resumo:
Temperature changes in Antarctica over the last millennium are investigated using proxy records, a set of simulations driven by natural and anthropogenic forcings and one simulation with data assimilation. Over Antarctica, a long term cooling trend in annual mean is simulated during the period 1000–1850. The main contributor to this cooling trend is the volcanic forcing, astronomical forcing playing a dominant role at seasonal timescale. Since 1850, all the models produce an Antarctic warming in response to the increase in greenhouse gas concentrations. We present a composite of Antarctic temperature, calculated by averaging seven temperature records derived from isotope measurements in ice cores. This simple approach is supported by the coherency displayed between model results at these data grid points and Antarctic mean temperature. The composite shows a weak multi-centennial cooling trend during the pre-industrial period and a warming after 1850 that is broadly consistent with model results. In both data and simulations, large regional variations are superimposed on this common signal, at decadal to centennial timescales. The model results appear spatially more consistent than ice core records. We conclude that more records are needed to resolve the complex spatial distribution of Antarctic temperature variations during the last millennium.
Resumo:
1. The cover of plant species was recorded annually from 1988 to 2000 in nine spatially replicated plots in a species-rich, semi-natural meadow at Negrentino (southern Alps). This period showed large climatic variation and included the centennial maximum and minimum frequency of days with ≥ 10 mm of rain. 2. Changes in species composition were compared between three 4-year intervals characterized by increasingly dry weather (1988–91), a preceding extreme drought (1992–95), and increasingly wet weather (1997–2000). Redundancy analysis and anova with repeated spatial replicates were used to find trends in vegetation data across time. 3. Recruitment capacity, the potential for fast clonal growth and seasonal expansion rate were determined for abundant taxa and tested in general linear models (GLM) as predictors for rates of change in relative cover of species across the climatically defined 4-year intervals. 4. Relative cover of the major growth forms present, graminoids and forbs, changed more in the period following extreme drought than at other times. Recruitment capacity was the only predictor of species’ rates of change. 5. Following perturbation, re-colonization was the primary driver of vegetation dynamics. The dominant grasses, which lacked high recruitment from seed, therefore decreased in relative abundance. This effect persisted until the end of the study and may represent a lasting response to an extreme climatic event.