6 resultados para Scientific production

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study analyses transdisciplinary co-production of knowledge in the development of organic farming in Switzerland by using Fleck's theory of thought styles and thought collectives. Three different phases can be identified throughout the historical development. The initial phase lasting from the beginning of the 1920s to the early 1970s contains numerous characteristics of diverse well-established definitions and concepts of transdisciplinarity and represents a successful transdisciplinary process, which has not been perceived as such in the past and present scientific discussion. The second and third phases show an increasing segregation of thought collectives, caused by internal changes such as the establishment of specialised research institutions and external processes like agriculture policy and market development. These developments led to a decreasing degree of transdisciplinarity. We observe an ambiguous trend: the continuously growing and today well-established positive societal recognition of an initially rather little accepted newcomer movement is associated with the gradual loss of its very valuable forms of knowledge co-production and the related philosophical background. In order to maintain the various forms of transdisciplinary co-production of knowledge, one has to reflect not only their results or outcome but also the whole cooperation process, which has led to these results. The understanding of the historical development and characteristic features of knowledge co-production as presented in this study will help to reinforce transdisciplinary research in organic agriculture and research on transdisciplinarity in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Better access to knowledge and knowledge production has to be reconsidered as key to successful individual and social mitigation and adaptation strategies for global change. Indeed, concepts of sustainable development imply a transformation of science towards fostering democratisation of knowledge production and the development of knowledge societies as a strategic goal. This means to open the process of scientific knowledge production while simultaneously empowering people to implement their own visions for sustainable development. Advocates of sustainability science support this transformation. In transdisciplinary practice, they advance equity and accountability in the access to and production of knowledge at the sciencesociety interface. UNESCO points to advancements, yet Northern dominance persists in knowledge production as well as in technology design and transfer. Further, transdisciplinary practice remains experimental and hampered by inadequate and asymmetrically equipped institutions in the North and South and related epistemological and operational obscurity. To help identify clear, practicable transdisciplinary approaches, I recommend examining the institutional route i.e., the learning and adaptation process followed in concrete cases. The transdisciplinary Eastern and Southern Africa Partnership Programme (19982013) is a case ripe for such examination. Understanding transdisciplinarity as an integrative approach, I highlight ESAPPs three key principles for a more democratised knowledge production for sustainable development: (1) integration of scientific and non-scientific knowledge systems; (2) integration of social actors and institutions; and (3) integrative learning processes. The analysis reveals ESAPPs achievements in contributing to more democratic knowledge production and South ownership in the realm of sustainable development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Better access to knowledge and knowledge production has to be reconsidered as key to successful individual and social mitigation and adaptation strategies for global change. Indeed, concepts of sustainable development imply a transformation of science (Lubchenco 1998; WBGU 2011 and 2012) towards fostering democratisation of knowledge production as a contribution to the development of knowledge societies as a strategic goal (UNESCO 2005). This means to open the process of scientific knowledge production while simultaneously empowering people to implement their own visions for sustainable development. Advocates of sustainability science support this transformation. In transdisciplinary practice, they advance equity and accountability in the access to and production of knowledge at the sciencesociety interface (Hirsch Hadorn et al 2006; Hirsch Hadorn et al 2008; Jger 2009; Adger and Jordan 2009; KFPE 2012). UNESCO (2010) points to advancements, yet Northern dominance persists in knowledge production as well as in technology design and transfer (Standing and Taylor 2007; Zingerli 2010). Further, transdisciplinary practice remains experimental and hampered by inadequate and asymmetrically equipped institutions in the North and South and related epistemological and operational obscurity (Wiesmann et al 2011). To help identify clear, practicable transdisciplinary approaches, I recommend examining the institutional route (Mukhopadhyay et al 2006) i.e., the learning and adaptation process followed in concrete cases. The transdisciplinary Eastern and Southern Africa Partnership Programme (19982013) is a case ripe for such examination. Understanding transdisciplinarity as an integrative approach (Pohl et al 2008; Stock and Burton 2011), I highlight ESAPPs three key principles for a more democratised knowledge production for sustainable development: (1) integration of scientific and non-scientific knowledge systems; (2) integration of social actors and institutions; and (3) integrative learning processes. The analysis reveals ESAPPs achievements in contributing to more democratic knowledge production and South ownership in the realm of sustainable development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. OSIRIS, the scientific imaging system onboard the ESA Rosetta spacecraft, has been imaging the nucleus of comet 67P/Churyumov-Gerasimenko and its dust and gas environment since March 2014. The images serve different scientific goals, from morphology and composition studies of the nucleus surface, to the motion and trajectories of dust grains, the general structure of the dust coma, the morphology and intensity of jets, gas distribution, mass loss, and dust and gas production rates. Aims. We present the calibration of the raw images taken by OSIRIS and address the accuracy that we can expect in our scientific results based on the accuracy of the calibration steps that we have performed. Methods. We describe the pipeline that has been developed to automatically calibrate the OSIRIS images. Through a series of steps, radiometrically calibrated and distortion corrected images are produced and can be used for scientific studies. Calibration campaigns were run on the ground before launch and throughout the years in flight to determine the parameters that are used to calibrate the images and to verify their evolution with time. We describe how these parameters were determined and we address their accuracy. Results. We provide a guideline to the level of trust that can be put into the various studies performed with OSIRIS images, based on the accuracy of the image calibration.