4 resultados para Scheduling models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.
Resumo:
The paper deals with batch scheduling problems in process industries where final products arise from several successive chemical or physical transformations of raw materials using multi–purpose equipment. In batch production mode, the total requirements of intermediate and final products are partitioned into batches. The production start of a batch at a given level requires the availability of all input products. We consider the problem of scheduling the production of given batches such that the makespan is minimized. Constraints like minimum and maximum time lags between successive production levels, sequence–dependent facility setup times, finite intermediate storages, production breaks, and time–varying manpower contribute to the complexity of this problem. We propose a new solution approach using models and methods of resource–constrained project scheduling, which (approximately) solves problems of industrial size within a reasonable amount of time.
Resumo:
This paper is concerned with the modelling of storage configurations for intermediate products in process industries. Those models form the basis of algorithms for scheduling chemical production plants. Different storage capacity settings (unlimited, finite, and no intermediate storage), storage homogeneity settings (dedicated and shared storage), and storage time settings (unlimited, finite, and no wait) are considered. We discuss a classification of storage constraints in batch scheduling and show how those constraints can be integrated into a general production scheduling model that is based on the concept of cumulative resources.